Legumain-Specific Near-Infrared Fluorescence "Turn On" for Tumor-Targeted Imaging.

Anal Chem

Hefei National Laboratory of Physical Sciences at Microscale, Department of Chemistry , University of Science and Technology of China, 96 Jinzhai Road , Hefei , Anhui 230026 , China.

Published: August 2018

Legumain is one of the cysteine proteases which can serve as an essential indicator for cancer diagnosis. Near-infrared (NIR) nanoprobes with fluorescence "Turn On" property are advantageous in cancer diagnosis. However, to the best of our knowledge, using a completely organic NIR nanoprobe to image legumain activity either in vitro or in vivo has not been reported. Herein, employing a CBT-Cys click condensation reaction, we used a rationally designed NIR probe Cys(StBu)-Ala-Ala-Asn-Lys(Cy5.5)-CBT (1) to synthesize its nanoprobes 1-NPs with self-quenched fluorescence. Cell and animal experiments indicated that our nanoprobes were able to specifically image legumain activity in living cells and tumors with a NIR fluorescence "Turn On" manner. We envision that the nanoprobes could be applied for the diagnosis of legumain-related diseases in the near future.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.8b02704DOI Listing

Publication Analysis

Top Keywords

fluorescence "turn
12
"turn on"
12
cancer diagnosis
8
image legumain
8
legumain activity
8
legumain-specific near-infrared
4
fluorescence
4
near-infrared fluorescence
4
on" tumor-targeted
4
tumor-targeted imaging
4

Similar Publications

Genetic architecture of Multiple Myeloma and its prognostic implications - An updated review.

Malays J Pathol

December 2024

Universiti Sains Malaysia, School of Medical Sciences, Human Genome Centre, Health Campus, Kelantan, Malaysia.

Multiple myeloma (MM), a clonal B-cell neoplasia, is an incurable and heterogeneous disease where survival ranges from a few months to more than 10 years. The clinical heterogeneity of MM arises from multiple genomic events that result in tumour development and progression. Recurring genomic abnormalities including cytogenetic abnormalities, gene mutations and abnormal gene expression profiles in myeloma cells have a strong prognostic power.

View Article and Find Full Text PDF

Cardiovascular disease is the primary cause of mortality worldwide, as stated by the World Health Organization. We utilized the red fluorescence emitted by copper nanoclusters (CuNCs) to detect cardiac Troponin T (cTnT). We designed a fluorescent probe to detect cTnT using an on-off-on technique.

View Article and Find Full Text PDF

pH and peroxynitrite (ONOO) are two critical biomarkers to unveil the corresponding status of endoplasmic reticulum (ER) stress and mitochondrial dysfunction, which are closely related to Alzheimer's disease (AD). Simultaneously monitoring pH and ONOO fluctuations in the ER and mitochondria during AD progression is pivotal for clarifying the interplay between the disorders of the two organelles and revealing AD pathogenesis. Herein, we designed and synthesized a dual-channel fluorescent probe (DCFP) to visualize pH and ONOO in the ER and mitochondria.

View Article and Find Full Text PDF

Rational Development of a Lipid Droplets and Hypochlorous Acid In-Sequence Responsive Fluorescent Probe for Accurate Imaging of Atherosclerotic Plaques.

Anal Chem

December 2024

Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China.

To answer the call for effective and timely intervention in cardiovascular diseases (CVDs), the development of fluorescent probes that can precisely identify atherosclerotic plaques, the root cause of various fatal CVDs, is highly desirable but remains a great challenge. Herein, by integrating bis(trifluoromethyl)benzyl and phenothiazine into the coumarin matrix, a robust fluorescent probe, NOR1, has been developed. NOR1 responds sequentially to lipid droplets (LDs) and HClO via fluorescence turn-on and ratiometric readouts, respectively, with a fast response rate (within 70 s for LDs and 80 s for HClO), excellent sensitivity (detection limit: 0.

View Article and Find Full Text PDF

[Construction of a 17-estradiol sensor based on a magnetic graphene oxide/aptamer separating material].

Se Pu

January 2025

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.

17-Estradiol (E2) is a natural steroidal estrogen essential for a variety of physiological functions in organisms. However, external E2, which is renowned for its potent biological effects, is also considered to be an endocrine-disrupting compound (EDC) capable of disturbing the normal operation of the endocrine system, even at nanogram-per-liter (ng/L) concentrations. Studies have revealed that medical and livestock wastewater can be contaminated with E2, which poses potential risks to human health.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!