Light transmission of Laguerre-Gaussian vector vortex beams in different local regions in mouse brain tissue is investigated. Transmittance is measured in the ballistic and diffusive regions with various polarizations states and orbital angular momentums (OAM). The transmission change observed with structured light other than linear polarization is attributed to chiroptical phenomena from the chiral brain media and the handedness of the light. For instance, classically entangled beams showed higher transmittance and constant value dependency on OAM modes than linear modes did. Also, circular polarization beam transmittance showed strong increase with topical charge OAM ( ℓ), which could be attributed to chiroptical effect.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbio.201800096DOI Listing

Publication Analysis

Top Keywords

classically entangled
8
entangled beams
8
mouse brain
8
brain tissue
8
attributed chiroptical
8
transmission classically
4
beams mouse
4
tissue light
4
light transmission
4
transmission laguerre-gaussian
4

Similar Publications

Form-function relationships often have tradeoffs: if a material is tough, it is often inflexible, and vice versa. This is particularly relevant for the elephant trunk, where the skin should be protective yet elastic. To investigate how this is achieved, we used classical histochemical staining and second harmonic generation microscopy to describe the morphology and composition of elephant trunk skin.

View Article and Find Full Text PDF

A key objective in nuclear and high-energy physics is to describe nonequilibrium dynamics of matter, e.g., in the early Universe and in particle colliders, starting from the standard model of particle physics.

View Article and Find Full Text PDF

Verifiable measurement-based quantum random sampling with trapped ions.

Nat Commun

January 2025

Joint Center for Quantum Information and Computer Science (QuICS), University of Maryland & NIST, College Park, MD, USA.

Quantum computers are now on the brink of outperforming their classical counterparts. One way to demonstrate the advantage of quantum computation is through quantum random sampling performed on quantum computing devices. However, existing tools for verifying that a quantum device indeed performed the classically intractable sampling task are either impractical or not scalable to the quantum advantage regime.

View Article and Find Full Text PDF

High-dimensional photon states (qudits) are pivotal to enhance the information capacity, noise robustness, and data rates of quantum communications. Time-bin entangled qudits are promising candidates for implementing high-dimensional quantum communications over optical fiber networks with processing rates approaching those of classical telecommunications. However, their use is hindered by phase instability, timing inaccuracy, and low scalability of interferometric schemes needed for time-bin processing.

View Article and Find Full Text PDF

Time-bin entangled Bell state generation and tomography on thin-film lithium niobate.

npj Quantum Inf

December 2024

ETH Zurich, Department of Physics, Institute for Quantum Electronics, Optical Nanomaterial Group, Auguste-Piccard-Hof, 1, 8093 Zurich, Switzerland.

Optical quantum communication technologies are making the prospect of unconditionally secure and efficient information transfer a reality. The possibility of generating and reliably detecting quantum states of light, with the further need of increasing the private data-rate is where most research efforts are focusing. The physical concept of entanglement is a solution guaranteeing the highest degree of security in device-independent schemes, yet its implementation and preservation over long communication links is hard to achieve.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!