This study aimed to compare the potential of Lemna minor, Spirodela sp., Eichhornia crassipes and Pistia stratiotes to remove Co from a realistic aquatic environment. Although all four plant species performed similarly well after 3 days of exposure to 50 kBq LCo, Lemna minor and Spirodela sp. came forward as having higher Co removal potential. This conclusion is, in first instance, based on the high Co removal percentage obtained after a short contact time (e.g. more than 95% could be removed after 6 h by Spirodela sp.). Additionally, Lemna minor and Spirodela sp. accumulated a high amount of Co per gram of biomass. For example, Lemna minor accumulated over three times more Co per gram of biomass compared to Pistia stratiotes and Eichhornia crassipes. Both plants also performed well in the pH range 5-9. We used Lemna minor to test the influence of the initial Co concentration (10, 50, 100 and 200 kBq LCo) on its phytoremediation capacity but no differences could be observed in removal percentage. In addition, it was shown that by optimising the initial amount of biomass, radioactive waste production can be minimised whilst maintaining high Co removal rates. Our study shows that these aquatic plants can be used for phytoremediation of Co from contaminated water and can be considered as a "green" addition or alternative for conventional remediation techniques.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-018-2759-7 | DOI Listing |
Environ Pollut
January 2025
Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia; Faculty of Mechanical Engineering, Brno University of Technology, Brno, Czech Republic. Electronic address:
Tire wear microplastics (TWMs) are continuously generated during driving and are subsequently released into the environment, where they pose potential risks to aquatic organisms. In this study, the effects of untreated, hydrated, and aged (in stream water) TWMs on the growth, root development, photosynthesis, electron transport system (ETS) activity, and energy-rich molecules of duckweed Lemna minor were investigated. The results indicated that untreated and aged TWMs have the most pronounced negative effects on Lemna minor, as evidenced by reduced growth and impaired root development.
View Article and Find Full Text PDFChemosphere
January 2025
Nanoqam, Department of Chemistry, University of Quebec at Montreal, H3C 3P8, Canada; École de technologie supérieure, Montréal, Québec, H3C 1K3, Canada. Electronic address:
Plants (Basel)
January 2025
School of Biological, Earth and Environmental Sciences, University College Cork, Distillery Fields, North Mall, T23 TK30 Cork, Ireland.
As a result of intensive agriculture, large quantities of liquid wastewaters are produced. Dairy soiled water (DSW) is produced in large volumes during the milking process of cattle. It comprises essential plant nutrients such as nitrogen, phosphorus, and potassium.
View Article and Find Full Text PDFFront Microbiol
December 2024
Department of Plant Physiology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia.
Numerous management methods are deployed to try to mitigate the destructive impact of weedy and invasive populations. Yet, such management practices may cause these populations to inadvertently evolve in ways that have consequence on their invasiveness. To test this idea, we conducted a two-step field mesocosm experiment; we evolved genetically diverse populations of the duckweed to targeted removal management and then tested the impact of that evolution in replicated invasions into experimental resident communities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!