Syntrophic oxidation of butyrate is catabolized by a few bacteria specialists in the presence of methanogens. In the present study, a highly enriched butyrate-oxidizing consortium was obtained from a wetland sediment in Tibetan Plateau. During continuous transfers of the enrichment, the addition of magnetite nanoparticles (nanoFeO) consistently enhanced butyrate oxidation and CH production. Molecular analysis revealed that all bacterial sequences from the consortium belonged to with the closest relative of and 96% of the archaeal sequences were related to with the remaining sequences to . Addition of graphite and carbon nanotubes for a replacement of nanoFeO caused the similar stimulatory effect. Silica coating of nanoFeO surface, however, completely eliminated the stimulatory effect. The control experiment with axenic cultivation of a strain and two methanogen strains showed no effect by nanoFeO. Together, the results in the present study support that syntrophic oxidation of butyrate is likely facilitated by direct interspecies electron transfer in the presence of conductive nanomaterials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6041394 | PMC |
http://dx.doi.org/10.3389/fmicb.2018.01480 | DOI Listing |
Sci Rep
January 2025
Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), Fundación para Investigaciones Biológicas Aplicadas (FIBA), Mar del Plata, 7600, Argentina.
The fungal green synthesis of nanoparticles (NPs) has gained great interest since it is a cost-effective and easy handling method. The process is simple because fungi secrete metabolites and proteins capable of reducing metal salts in aqueous solution, however the mechanism remains largely unknown. The aim of this study was to analyze the secretome of a Trichoderma harzianum strain during the mycobiosynthesis process of zinc and iron nanoparticles.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Food Inspection and Quarantine Technology Center of Shenzhen Customs, Shenzhen Academy of Inspection and Quarantine, Shenzhen, 518045, PR China.
Background: Ochratoxin A (OTA) is toxic secondary metabolites produced by fungi and can pose a serious threat to food safety and human health. Due to the high stability and toxicity, OTA contamination in agricultural products is of great concern. Therefore, the development of a highly sensitive and reliable OTA detection method is crucial to ensure food safety.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
University Centre for Research and Development (UCRD), Department of Physics, Chandigarh University, Mohali 140413, Punjab, India.
Novel studies on typical synthesized magnetite nanoparticles were encapsulated into a poly (butylene succinate)/poly (ethylene glycol) copolymer (PBS-PEG). PBS was chosen because of its biocompatibility characteristics necessary for biomedical applications. PEG, as part of the macromolecular structure, increases the hybrid system's solubility in an aqueous environment, increasing the circulation time of the material in the bloodstream.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Oncology, Wroclaw Medical University, 50-367 Wroclaw, Poland.
Sentinel lymph node (SLN) detection has been widely investigated in recent years as a part of the surgical staging of women with endometrial cancer (EC), gradually overtaking lymphadenectomy (LND) in this respect. In this study, thirty EC patients, assumed as stage I, were investigated using superparamagnetic iron oxide (SPIO) as a tracer for SLN detection followed by LND. The endpoints of this research were the proportion of successful SLN detection, the average number of SLNs per patient, the percentage of bilaterally detected SLNs, and the proportion of metastatic SLNs.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Institute of Energy: Sustainability, Environment and Equity (I:SEE), State University of New York at Stony Brook, Stony Brook, New York 11794, United States.
ConspectusLithium-ion batteries are recognized as an important electrochemical energy storage technology due to their superior volumetric and gravimetric energy densities. Graphite is widely used as the negative electrode, and its adoption enabled much of the modern portable electronics technology landscape. However, developing markets, such as electric vehicles and grid-scale storage, have increased demands, including higher energy content and a diverse materials supply chain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!