Autotaxin (ATX) is a secreted glycoprotein and the only member of the ectonucleotide pyrophosphatase/phosphodiesterase family that converts lysophosphatidylcholine (LPC) into lysophosphatidic acid (LPA). LPA controls key responses, such as cell migration, proliferation, and survival, implicating ATX-LPA signaling in various (patho)physiological processes and establishing it as a drug target. ATX structural and functional studies have revealed an orthosteric and an allosteric site, called the "pocket" and the "tunnel," respectively. However, the mechanisms in allosteric modulation of ATX's activity as a lysophospholipase D are unclear. Here, using the physiological LPC substrate, a new fluorescent substrate, and diverse ATX inhibitors, we revisited the kinetics and allosteric regulation of the ATX catalytic cycle, dissecting the different steps and pathways leading to LPC hydrolysis. We found that ATX activity is stimulated by LPA and that LPA activates ATX lysophospholipase D activity by binding to the ATX tunnel. A consolidation of all experimental kinetics data yielded a comprehensive catalytic model supported by molecular modeling simulations and suggested a positive feedback mechanism that is regulated by the abundance of the LPA products activating hydrolysis of different LPC species. Our results complement and extend the current understanding of ATX hydrolysis in light of the allosteric regulation by ATX-produced LPA species and have implications for the design and application of both orthosteric and allosteric ATX inhibitors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6139564PMC
http://dx.doi.org/10.1074/jbc.RA118.004450DOI Listing

Publication Analysis

Top Keywords

atx
9
lysophosphatidic acid
8
lpa lpa
8
orthosteric allosteric
8
atx inhibitors
8
allosteric regulation
8
allosteric
6
lpa
6
acid produced
4
produced autotaxin
4

Similar Publications

Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by joint swelling, pain, and bone remodeling. We previously reported that autotaxin (ATX) deficiency disrupts lipid rafts in macrophages. Lipid raft disruption results in the dysregulation of RANK signaling, which is crucial for osteoclastogenesis and the pathogenesis of RA.

View Article and Find Full Text PDF

Assessment of the Effects of Anatoxin-a In Vitro: Cytotoxicity and Uptake.

Toxins (Basel)

December 2024

Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González 2, 41012 Seville, Spain.

Anatoxin-a (ATX-a) is a cyanotoxin whose toxicological profile has been underinvestigated in comparison to other cyanotoxins such as microcystins (MCs) or cylindrospermopsin (CYN). However, its wide distribution, occurrence, and toxic episodes justify more attention. It is classified as a neurotoxin, but it has also been reported to affect other organs and systems.

View Article and Find Full Text PDF

Pulmonary fibrosis (PF) is a progressive, fatal lung disease lacking effective treatments. Autotaxin (ATX) plays a crucial role in exacerbating inflammation and fibrosis, making it a promising target for fibrosis therapies. Herein, starting from PAT-409 (Cudetaxestat), a series of novel ATX inhibitors bearing 1-indole-3-carboxamide, 4,5,6,7-tetrahydro-7-pyrazolo[3,4-]pyridin-7-one, or 4,5,6,7-tetrahydro-1-pyrazolo[4,3-]pyridine cores were designed based on the structure of ATX hydrophobic tunnel.

View Article and Find Full Text PDF

Background: ATX-FGF/SCA27A has been exclusively associated with heterozygous variants in the FGF14 gene, presenting with postural tremor, slowly progressive cerebellar ataxia, and psychiatric and behavioral disturbances.

Objectives: This study describes the first case of ATX-FGF/SCA27A linked to a biallelic frameshift variant in the FGF14 gene.

Methods: Whole-exome sequencing (WES) was conducted using the Illumina NovaSeq 6000 platform, and the identified variant was confirmed using Sanger sequencing.

View Article and Find Full Text PDF

Background: Recent studies have reported that expanded GCA repeats in the GLS gene can cause glutaminase deficiency with ataxia phenotype. However, to data, no studies have investigated the distribution and role of GCA repeats in the GLS gene of Chinese individuals.

Objective: The aim was to investigate the distribution of GCA repeats in Chinese individuals, including undiagnosed ataxia patients for identifying causal factors, healthy controls for determining the normal range, and ATX-ATXN3 (spinocerebellar ataxia type 3, SCA3) patients for exploring genetic modifiers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!