Glucocorticoid-induced CREB activation and myostatin expression in C2C12 myotubes involves phosphodiesterase-3/4 signaling.

Biochem Biophys Res Commun

Department of Medicine, Renal Division, Emory University, Atlanta, GA 30322, USA; Research Service Line, Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA; Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA. Electronic address:

Published: September 2018

Muscle atrophy in metabolic conditions like chronic kidney disease (CKD) and diabetes are associated with glucocorticoid production, dysfunctional insulin/Akt/FoxO3 signaling and increased myostatin expression. We recently found that CREB, a transcription factor proposed to regulate myostatin expression, is highly phosphorylated in some wasting conditions. Based on a novel Akt-PDE3/4 signaling paradigm, we hypothesized that reduced Akt signaling contributes to CREB activation and myostatin expression. C2C12 myotubes were incubated with dexamethasone (Dex), an atrophy-inducing synthetic glucocorticoid. Akt/CREB signaling and myostatin expression were evaluated by immunoblot and qPCR analyses. Inhibitors of Akt, phosphodiesterase (PDE)-3/4, and protein kinase A (PKA) signaling were used to test our hypothesis. Incubating myotubes with Dex for 3-24 h inhibited Akt phosphorylation and enhanced CREB phosphorylation as well as myostatin mRNA and protein. Inhibition of PI3K/Akt signaling with LY294002 similarly increased CREB phosphorylation. Isobutyl-methylxanthine (IBMX, a pan PDE inhibitor), milrinone (PDE3 inhibitor) and rolipram (PDE4 inhibitor) augmented CREB phosphorylation and myostatin expression. Inhibition of protein kinase A by PKI reverted Dex- or IBMX-induced CREB phosphorylation and myostatin expression. Our study provides evidence supporting a newly identified mechanism by which a glucocorticoid-related reduction in Akt signaling contributes to myostatin expression via CREB activation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6173943PMC
http://dx.doi.org/10.1016/j.bbrc.2018.07.056DOI Listing

Publication Analysis

Top Keywords

myostatin expression
32
creb phosphorylation
16
creb activation
12
myostatin
9
activation myostatin
8
expression
8
expression c2c12
8
c2c12 myotubes
8
signaling
8
expression creb
8

Similar Publications

Unlabelled: Sarcopenic obesity, encompassing both muscle wasting and obesity, is relevant across individuals. (TS) has been shown to regulate glucose and lipid metabolisms. However, the efficacy and mechanisms of TS fruit (TSF) in sarcopenic obesity are unclear.

View Article and Find Full Text PDF

Excessive BMP3b suppresses skeletal muscle differentiation.

Biochem Biophys Res Commun

December 2024

Molecular Signaling and Biochemistry, Kyushu Dental University, Kokurakitaku, Kitakyushu, Fukuoka, Japan.

Bone morphogenetic protein (BMP)-3b, also known as growth differentiation factor (GDF)-10, belongs to the transforming growth factor (TGF)-β superfamily. Despite being named a BMP, BMP3b is considered as an intermediate between the TGFβ/activin/myostatin and BMP/GDF subgroups of the TGFβ superfamily. Myoblast differentiation is tightly regulated by various cytokines, including the TGFβ superfamily members.

View Article and Find Full Text PDF

Background: Promoting muscle regeneration through stem cell therapy has potential risks. We investigated the effect of umbilical cord mesenchymal stem cells (UMSCs) Exosomes (Exo) Follistatin on muscle regeneration.

Methods: The Exo was derived from UMSCs cells and was utilized to affect the mice muscle injury model and C2C12 cells myotubes atrophy model.

View Article and Find Full Text PDF

A and Extract Blend Attenuates Muscle Atrophy by Regulating Protein Metabolism and Antioxidant Activity.

J Med Food

December 2024

Division of Food and Nutrition and Human Ecology Research Institute, Chonnam National University, Gwangju, Republic of Korea.

Here, we investigated whether a mixture of and (1:3, KGC01CE) could suppress muscle atrophy in HO-induced C2C12 cells and dexamethasone-injected mice. Our results revealed that KGC01CE effectively safeguarded against HO-induced muscle atrophy in C2C12 cells compared with the same mixture at other ratios. We demonstrated that dexamethasone elicited oxidative stress in muscle tissue and decreased the grip strength and cross-sectional areas of muscle fibers; however, oral administration of KGC01CE (1:3) suppressed these dexamethasone-induced changes.

View Article and Find Full Text PDF

Transcriptome-derived evidence reveals the regulatory network in the skeletal muscle of the fast-growth mstnb male tilapia.

Comp Biochem Physiol Part D Genomics Proteomics

December 2024

Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Science, Southwest University, Fisheries Engineering Institute, Chinese Academy of Fishery Sciences, Chongqing 400715, PR China. Electronic address:

Myostatin (Mstn) negatively regulates muscle growth and Mstn deficiency induced "double-skeletal muscle" development in vertebrates, including tilapias. In this study, we performed a transcriptomic analysis of skeletal muscle from both wild-type and mstnb males to investigate the molecular mechanisms underlying skeletal muscle hypertrophy in mstnb mutants. We identified 4697 differentially expressed genes (DEGs), 113 differentially expressed long non-coding RNAs (DE lncRNAs), 211 differentially expressed circular RNAs (DE circRNAs), and 98 differentially expressed microRNAs (DE miRNAs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!