Conformational response to charge clustering in synthetic intrinsically disordered proteins.

Biochim Biophys Acta Gen Subj

Department of Biotechnology and Biosciences, State University of Milano-Bicocca, Piazza della Scienza 2, Milano 20126, Italy. Electronic address:

Published: October 2018

AI Article Synopsis

  • Scientists studied proteins that don't have a fixed shape, called intrinsically disordered proteins (IDPs), to see how opposite charges in their sequences affect their structure.
  • They tested two similar proteins with different amounts of a specific amino acid called proline and created versions of these proteins with different charge distributions.
  • The results showed that having a certain charge pattern can make proteins more compact, but how much this happens depends on the sequence of the protein, especially the presence of proline.

Article Abstract

Background: Recent theoretical and computational studies have shown that the charge content and, most importantly, the linear distribution of opposite charges are major determinants of conformational properties of intrinsically disordered proteins (IDPs). Charge segregation in a sequence can be measured through κ, which represents a normalized measure of charge asymmetry. A strong inverse correlation between κ and radius of gyration has been previously demonstrated for two independent sets of permutated IDP sequences.

Methods: We used two well-characterized IDPs, namely measles virus N and Hendra virus PNT4, sharing a very similar fraction of charged residues and net charge per residue, but differing in proline (Pro) content. For each protein, we have rationally designed a low- and a high-κ variant endowed with the highest and the lowest κ values compatible with their natural amino acid composition. Then, the conformational properties of wild-type and κ-variants have been assessed by biochemical and biophysical techniques.

Results: We confirmed a direct correlation between κ and protein compaction. The analysis of our original data along with those available from the literature suggests that Pro content may affects the responsiveness to charge clustering.

Conclusions: Charge clustering promotes IDP compaction, but the extent of its effects depends on the sequence context. Proline residues seem to play a role contrasting compaction.

General Significance: These results contribute to the identification of sequence determinants of IDP conformational properties. They may also serve as an asset for rational design of non-natural IDPs with tunable degree of compactness.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbagen.2018.07.011DOI Listing

Publication Analysis

Top Keywords

conformational properties
12
charge clustering
8
intrinsically disordered
8
disordered proteins
8
pro content
8
charge
7
conformational
4
conformational response
4
response charge
4
clustering synthetic
4

Similar Publications

The global public health risk posed by Salmonella Kentucky (S. Kentucky) is rising, particularly due to the dissemination of antimicrobial resistance genes in human and animal populations. This serovar, widespread in Africa, has emerged as a notable cause of non-typhoidal gastroenteritis in humans.

View Article and Find Full Text PDF

A series of tripodal (three-arm) lysine-based peptides were designed and synthesized and their self-assembly properties in aqueous solution and antimicrobial activity were investigated. We compare the behaviors of homochiral tripodal peptides (KKY)K and a homologue containing the bulky aromatic fluorenylmethoxycarbonyl (Fmoc) group Fmoc-(KKY)K, and heterochiral analogues containing k (d-Lys), (kkY)K and Fmoc-(kkY)K. The molecular conformation and self-assembly in aqueous solutions were probed using various spectroscopic techniques, along with small-angle X-ray scattering (SAXS) and cryogenic-transmission electron microscopy (cryo-TEM).

View Article and Find Full Text PDF

Nile blue has been widely used in histological staining, fluorescence labeling, and DNA probing, with its intercalation behavior into the DNA helix being well documented. Here, we present a comprehensive investigation to address a current knowledge gap regarding the binding properties of Nile blue to two types of double-stranded RNA (dsRNA): poly(A·U) and poly(I·C), using various biophysical techniques. Absorption and fluorescence spectroscopic studies suggest a significant binding interaction between Nile blue and the two designated dsRNAs, specifically indicating an intercalation binding mode with poly(A·U) and demonstrating a noticeably higher binding affinity compared to poly(I·C).

View Article and Find Full Text PDF

Ultrasensitive and high selectivity detection of fibrin using Y-shaped DNA-homing peptide doped probe on localized surface plasmon resonance platform.

Anal Chim Acta

January 2025

Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China.

Background: Localized surface plasmon resonance (LSPR) sensor has drawn continuous attention to application of the detection of antibody, protein, virus, and bacteria. However, natural recognition molecules, such as antibody, which possess some properties, including low thermal stability, complicated operation and high price, uncontrollability of length and size and a tendency to accumulate easily on the surface of chip to reduce the sensitive of method. Furthermore, common blocking agents are not suitable for development of novel biosensors.

View Article and Find Full Text PDF

Active site-inspired multicopper laccase-like nanozymes for detection of phenolic and catecholamine compounds.

Anal Chim Acta

January 2025

School of Medical Devices, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, PR China. Electronic address:

Phenolic compounds are typical organic pollutants which cause severe human health problems due to their teratogenesis, carcinogenesis, neurotoxicity, immunotoxicity and endocrine disruption. Natural laccase is a multicopper oxidase existing in bacteria, plants, and insects, which can accelerate the transformation of phenolic compounds to their less hazardous oxidized products under mild conditions without harmful byproducts. Despite eco-environmentally friendly property of laccase, it still faces constraints of widespread application attribute to its high cost, complex preparation, and vulnerability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!