Risk of Alzheimer's disease with metal concentrations in whole blood and urine: A case-control study using propensity score matching.

Toxicol Appl Pharmacol

Department of Health Risk Management, College of Public Health, China Medical University, Taichung, Taiwan; Department of Medical Research, China Medical University Hospital, Taichung, Taiwan. Electronic address:

Published: October 2018

Environmental exposure to heavy metals is suspected to result in neuropathology damage and cognitive impairment. We aimed to explore the association of Alzheimer's disease (AD) risk with the internal dose of heavy metals by constructing a hospital-based case-control study and using propensity-score-matching methods. We investigated 170 patients with AD and 264 controls from the Department of Neurology and Family Medicine, China Medical University Hospital in Taiwan. All patients with AD received clinical neuropsychological examination and cognitive-function assessments, including the mini-mental status examination and clinical dementia rating scale. We also constructed a propensity-score-matched population of 82 patients with AD and 82 controls by matching age, gender, education, and AD-related comorbidity. Blood levels with cadmium, lead, mercury, selenium, and urinary arsenic profile were measured. Logistic regression models and 95% confidence intervals (CIs) were applied to estimate AD risk. After stratification by respective quartile cutoffs of heavy metals, the AD risk of study participants with high urinary inorganic arsenic (InAs%) or low dimethylarsinic acid (DMA%) significantly increased (p < 0.05), as similarly found in the propensity-score-matched population. In addition, people with a low median level of selenium and high median level of InAs%, or/and a low median level of DMA% had approximately two- to threefold significant AD risk. Urinary arsenic profiles may be associated with increased AD risk. Repeat measurements of heavy metals with large sample size and the surveying of potential exposure sources are recommended in future studies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.taap.2018.07.015DOI Listing

Publication Analysis

Top Keywords

heavy metals
12
alzheimer's disease
8
case-control study
8
risk
4
risk alzheimer's
4
disease metal
4
metal concentrations
4
concentrations blood
4
blood urine
4
urine case-control
4

Similar Publications

Heavy metal pollution is a major environmental and health problem due to the toxicity and persistence of metals such as lead, mercury, cadmium, and arsenic in water, soil, and air. Advances in sensor technology have significantly improved the detection and quantification of heavy metals, providing real-time monitoring and mitigation tools. This review explores recent developments in heavy metal detection, focusing on innovative uses of immobilized chromogenic reagents, nanomaterials, perovskites, and nanozymes.

View Article and Find Full Text PDF

The accumulation of disposable face masks (DFMs) has become a significant threat to the environment due to extensive use during the COVID-19 pandemic. In this research, we investigated the degradation of DFMs after their disposal in landfills. We replicated the potential degradation process of DFMs, including exposure to sunlight before subjecting them to synthetic landfill leachate (LL).

View Article and Find Full Text PDF

Laser-induced breakdown spectroscopy (LIBS) is a rapidly evolving in-situ multi-element analysis technique that has significantly advanced the field of liquid analysis. This study employs a femtosecond laser for quantitative analysis of heavy metals in flowing liquids, exploring its detection sensitivity and accuracy. Femtosecond pulsed laser excitation of water in a dynamic environment generates plasma while effectively preventing liquid splashing.

View Article and Find Full Text PDF

Sensitive fluorescence turn-on sensing of hydroxyl radical and glucose based on the oxidative degradation of reductive organic cage.

Talanta

January 2025

College of Chemistry and Materials Science, Hunan Engineering Research Center for Monitoring and Treatment of Heavy Metals Pollution in the Upper Reaches of Xiangjiang River, Hengyang Normal University, Hengyang, 421001, China. Electronic address:

The accurate and sensitive quantification of hydroxyl radical (·OH) and glucose is necessary for disease diagnosis and health guidance, but still challenging owing to the low concentration of ·OH and poor water solubility of fluorescent probes. In addition, fluorescent probes may cause secondary pollution to the environment. Here an organic cage was reported as a sensitive fluorescent probe for ·OH and glucose in aqueous solution without serious secondary pollution.

View Article and Find Full Text PDF

Eco-friendly synthesis of CuO/g-C₃N₄/Fe₃O₄ nanocomposites for efficient magnetic micro-solid phase extraction (M-μ-SPE) of trace cadmium from food and water samples.

Food Chem

December 2024

Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri, Turkiye; Technology Research and Application Center (TAUM), Erciyes University, Kayseri, Turkiye; Turkish Academy of Sciences (TUBA), Cankaya, Ankara, Turkiye; Khazar University Nano BioAnalytical Chemistry Center (NBAC), Mahsati Str 41, AZ-1096 Baku, Azerbaijan.

In this study, a green synthesis method for synthesizing a novel nanocomposite (CuO/g-C₃N₄/Fe₃O₄) utilizing renewable dragon fruit peels as the primary raw material was developed. Hydrothermal and thermal decomposition techniques were used for nanocomposite synthesis. This nanocomposite was subsequently employed for the separation and preconcentration of Cd(II) from various environments, including food and water samples.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!