Chlordecone (Kepone or CLD) is a highly persistent pesticide formerly used in French West Indies. Nowadays high levels of this pesticide are still found in soils which represent a subsequent source of contamination for outdoor-reared animals. In that context, sequestering matrices like biochars or activated carbons (ACs) are believed to efficiently decrease the bioavailability of such compounds when added to contaminated soils. The present study intends to test the respective efficiency of soil amendment strategies using commercial ACs or biochars (obtained by a 500 °C or 700 °C pyrolysis of 4 distinct type of wood). This study involved three experimental steps. The first one characterized specific surface areas of biochars and ACs. The second one assessed CLD-availability of contaminated artificial soils (50 μg g of Dry Matter) amended with 5% of biochar or AC (mass basis). The third one assessed CLD bioavailability of those artificial soils through an in vivo assay. To limit ethically the number of animals, selections of the most promising media were performed between each experimental steps. Forty four castrated male 40-day-old piglets were exposed during 10 day by amended artificial soils according to their group (n = 4). Only treatment groups exposed through amended soil with AC presented a significant decrease of concentrations of CLD in liver and adipose tissue in comparison with the control group (p < 0.001). A non-significant decrease was obtained by amending artificial soil with biochars. This decrease was particularly high for a coconut shell activated carbon were relative bioavailability was found lower than 3.2% for both tissues. This study leads to conclude that AC introduced in CLD contaminated soil should strongly reduce CLD bioavailability.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2018.05.181DOI Listing

Publication Analysis

Top Keywords

artificial soils
12
biochars activated
8
activated carbons
8
experimental steps
8
soils
5
amendment soil
4
biochars
4
soil biochars
4
carbons reduce
4
reduce chlordecone
4

Similar Publications

Will vegetation restoration affect the supply-demand relationship of water yield in an arid and semi-arid watershed?

Sci Total Environ

January 2025

Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Shaanxi 712100, PR China; College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China.

Natural processes, combined with human activities, determine the inherent quality of regional water supply and demand. However, the interaction between artificial vegetation restoration and water supply-demand dynamics remains insufficiently understood, particularly in arid and semi-arid regions. This study focuses on the Jinghe River Basin (JRB) in the central Loess Plateau, aiming to investigate the changes in supply and demand of ecosystem water yield services and analyze factors affecting the water supply-demand relationship during the vegetation restoration, using the InVEST model, scenario analysis, and the Geodetector.

View Article and Find Full Text PDF

Climate change is one of the most crucial issues in human society such that if it is not given sufficient attention, it can become a great threat to both humans and the Earth. Due to global warming, soil erosion is increasing in different regions. Therefore, this issue will require further investigation and the use of new tools.

View Article and Find Full Text PDF

Atmospheric nitrous oxide (NO) is a potent greenhouse gas, with long atmospheric residence time and a global warming potential 273 times higher than CO. NO emissions are mainly produced from soils and are influenced by biotic and abiotic factors that can be substantially altered by anthropogenic activities, such as land uses, especially when unmanaged natural ecosystems are replaced by croplands or other uses. In this study, we evaluated the spatial variability of NO emissions from croplands (maize, soybean, wheat, and sugar cane crops), paired with the natural grasslands or forests that they replaced across a wide environmental gradient in Argentina, and identified the key drivers governing the spatial variability of NO emissions using structural equation modeling.

View Article and Find Full Text PDF

Analyses of radioactivity concentrations in soil and assessment of effective doses in several districts of Banten and West Java, Indonesia.

Radiat Prot Dosimetry

January 2025

Research Center for Technology of Radiation Safety and Metrology, Nuclear Energy Research Organization, National Research and Innovation Agency of Indonesia, Jl. Raya Puspiptek, Muncul, Kec. Setu, Kota Tangerang Selatan, Banten 15310, Indonesia.

Radioactivity concentration in soil was analyzed around the capital city of Indonesia, Jakarta along with the adjoining provinces of West Java and Banten, representing one of the most densely populated in Indonesia. Nestled within this area is a nuclear research reactor. The analysis of natural and artificial radioactivity concentrations using a HPGe gamma spectrometry to measure 226Ra, 232Th, 40K, and 137Cs in surface soil samples.

View Article and Find Full Text PDF

Modeling techniques can be powerful predictors of soil salinity across various scales, ranging from local landscapes to global territories. This study was aimed to examine the accuracy of soil salinity prediction model integrating ANNs (artificial neural networks) and topographic factors with different cell sizes. For this purpose, soil salinity was determined at 103 points in the east of Mashhad, Razavi Khorasan, Iran.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!