Ascorbate Suppresses VEGF Expression in Retinal Pigment Epithelial Cells.

Invest Ophthalmol Vis Sci

John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida, United States.

Published: July 2018

Purpose: To investigate the impact of ascorbate, via DNA hydroxymethylation, on VEGF expression in retinal pigment epithelial (RPE) cells.

Methods: Dot-blot and hydroxymethylated DNA immunoprecipitation sequencing were applied to evaluate the impact of ascorbate on DNA hydroxymethylation in ARPE-19 cells. RNA sequencing (RNA-seq) was carried out to analyze the transcriptome. Quantitative RT-PCR and ELISA were conducted to examine the transcription and secretion of VEGF from cultured cells. Primary human fetal RPE cells and RPE-J cells were used to verify the effect of ascorbate on VEGF expression. ELISA was used to measure VEGF in the vitreous humor of Gulo-/- mice, which, like humans, cannot synthesize ascorbate de novo.

Results: Treatment with ascorbate (50 μM) promoted 5-hydroxymethycytosine (5hmC) generation and changed the genome-wide profiles of 5hmC in ARPE-19 cells. Ascorbate also caused a dramatic shift in the transcriptome-3186 differential transcripts, of which 69.3% are correlated with altered 5hmC in promoters or gene bodies. One of the most downregulated genes was VEGFA, which encodes the VEGF protein. The suppression of VEGF by ascorbate is independent of hypoxia-inducible factor 1-alpha (HIF-1α) but correlates with increased 5hmC in the gene body. The decreased transcription and secretion of VEGF by ascorbate were verified in primary human fetal RPE cells. Furthermore, adding ascorbate in the diet for Gulo-/- mice resulted in decreased levels of VEGF in the RPE/choroid and vitreous humor.

Conclusions: Ascorbate inhibits VEGF expression in RPE cells likely via DNA hydroxymethylation. Thus, ascorbate could be implicated in the prevention or treatment of diseases such as age-related macular degeneration (AMD).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6049987PMC
http://dx.doi.org/10.1167/iovs.18-24101DOI Listing

Publication Analysis

Top Keywords

vegf expression
16
ascorbate
12
dna hydroxymethylation
12
rpe cells
12
vegf
10
expression retinal
8
retinal pigment
8
pigment epithelial
8
cells
8
impact ascorbate
8

Similar Publications

Angiogenic Markers in Gestational Diabetes and their Association with Placental Dimensions.

Mol Cell Biochem

December 2024

Department of Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to Be University), Pune-Satara Road, Pune, 411043, India.

GDM is an increasing global concern, with its etiology not fully understood, though altered placental function is likely to play a role. Placental angiogenesis, essential for sufficient blood flow and nutrient exchange between mother and fetus, may be affected by GDM. However, the role of angiogenic markers in GDM remains unclear.

View Article and Find Full Text PDF

A Recombinant Human Collagen and RADA-16 Fusion Protein Promotes Hemostasis and Rapid Wound Healing.

ACS Appl Bio Mater

December 2024

Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Faculty of Life Science, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi Province 710069, China.

In this study, we designed a fusion protein, rhCR, by combining human collagen with the self-assembling peptide RADA-16 using genetic engineering technology. The rhCR protein was successfully expressed in . The rhCR can self-assemble into a three-dimensional nanofiber network under physiological conditions.

View Article and Find Full Text PDF

Background: The most prevalent endocrine disorder affecting women is PCOS. Programmed death of ovarian cells has yet to be elucidated. Ferroptosis is a kind of iron-dependent necrosis featured by significantly Fe-dependent lipid peroxidation.

View Article and Find Full Text PDF

Hyperbaric oxygen (HBO) therapy has emerged as a potential treatment, shown to enhance blood flow and angiogenesis. However, specific effects and mechanisms of HBO on limb ischaemia responding to a hypoxic environment remain largely unknown. We aimed to investigate the therapeutic potential of HBO in the treatment of limb ischaemia.

View Article and Find Full Text PDF

Background: The simultaneous differentiation of human pluripotent stem cells (hPSCs) into both endodermal and mesodermal lineages is crucial for developing complex, vascularized tissues, yet poses significant challenges. This study explores a method for co-differentiation of mesoderm and endoderm, and their subsequent differentiation into pancreatic progenitors (PP) with endothelial cells (EC).

Methods: Two hPSC lines were utilized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!