The soil material in constructed wetlands is effective in retaining Se from flue-gas desulfurization (FGD) wastewater (WW), but reducing conditions can enhance native-soil As mobility. A laboratory-based soil column experiment was performed to assess the effectiveness of ferrihydrite (Fh) in minimizing the mobility of native-soil As in water-saturated soil material. A saline FGD WW mixture (i.e., influent) was delivered to columns of untreated and Fh-treated soil for 60 d. One untreated column and one Fh-treated column were then subjected to drying, followed by an additional 30 d of influent delivery. Although the influent was low in As (∼1 μg L) and the soil As level was normal, the total dissolved As concentration of effluent from the untreated columns increased with time, from ∼1 μg L to a maximum of ∼27 μg L. In contrast, effluent from the Fh-treated columns remained low in As (i.e., <5 μg L). The strong correlation between total dissolved Fe and As in the effluent suggested that reductive dissolution of native-soil Fe minerals was responsible for releasing As into solution. Results from X-ray absorption spectroscopy showed newly precipitated Fe minerals in the Fh-treated soil, and the remaining As was mainly As(V) species in both the untreated and Fh-treated soils. Thus, native-soil As mobilized under saturated conditions can be sequestered by adding poorly crystalline Fe oxides to soil prior to saturation. Furthermore, results obtained by drying and rewetting the columns showed that saturated conditions must be maintained to minimize the remobilization of sequestered As and retained Se.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2134/jeq2018.01.0022 | DOI Listing |
<b>Background and Objective:</b> Prolonged utilization of chemical fertilizers can harm the soil and disturb the equilibrium of nutrients, resulting in a decline in cherry tomato yield. To enhance the growth of cherry tomato plants, it is necessary to add organic chemicals. The research aimed to determine the best elicitor biosaka concentration to apply to evoke the plant growth of cherry tomatoes (<i>Solanum lycopersicum</i> L.
View Article and Find Full Text PDFSci Rep
December 2024
Geotechnical Institute, TU Bergakademie Freiberg, Freiberg, Germany.
The development of new urban areas necessitates building on increasingly scarce land, often overlaid on weak soil layers. Furthermore, climate change has exacerbated the extent of global arid lands, making it imperative to find sustainable soil stabilization and erosion mitigation methods. Thus, scientists have strived to find a plant-based biopolymer that favors several agricultural waste sources and provides high strength and durability for sustainable soil stabilization.
View Article and Find Full Text PDFSci Rep
December 2024
College of A&F Engineering and Planning, Tongren University, Tongren, 554300, China.
The Wanshan mercury mining area (WMMA) in Guizhou Province, China, has been identified as a region at high ecological risk owing to heavy metal contamination. This study employed non-lethal sampling methods, using the phalanges of Pelophylax nigromaculatus in the WMMA as analytical material. Ten heavy metal (metalloid) elements were selected for analysis, including Hg, Cr, Mn, Ni, Cu, Zn, Cd, Pb, As, and Se.
View Article and Find Full Text PDFSci Rep
December 2024
ICAR-Indian Grassland and Fodder Research Institute, Jhansi, 284 003, India.
Sugarcane is a major industrial crop highly susceptible to parasitic weed (Striga spp.), causing a 38% reduction in cane yield due to a longer lag phase of 20-40 days, and wider spacing. Herbicides with a longer retention and slow-release nature could allow Striga seeds to germinate and be killed before attaching to the host.
View Article and Find Full Text PDFSci Rep
December 2024
Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India.
Phthalic acid esters are pivotal plasticizers in various applications, including cosmetics, packaging materials, and medical devices. They have garnered significant attention from the scientific community due to their persistence in ecosystems. The multifaceted aspects of PAEs, encompassing leaching, transformation, and toxicity, underscore their prominence as primary components of anthropogenic waste.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!