Seed exudates are plant-derived natural bioactive compounds consisting of a complex mixture of organic and inorganic molecules. Plant seed exudates have been poorly studied against parasite nematodes. This study was undertaken to identify proteins in the Myracrodruon urundeuva seed exudates and to assess the anthelmintic activity against Haemonchus contortus, an important parasite of small ruminants. M. urundeuva seed exudates (SEX) was obtained after immersion of seeds in sodium acetate buffer. SEX was fractionated with ammonium sulfate at 0-90% concentration to generate the ressuspended pellet (SEXF1) and the supernatant (SEXF2). SEX, SEXF1, and SEXF2 were exhaustively dialyzed against distilled water (cut-off: 12 kDa) and the protein contents determined. Mass spectrometry analyses of SEX, SEXF1, and SEXF2 were done to identify proteins and secondary metabolites. The seed exudates contained protease, protease inhibitor, peptidase, chitinase, and lipases as well as the low molecular weight secondary compounds ellagic acid and quercetin rhamnoside. SEX inhibited H. contortus larval development (LDA) (IC50 = 0.29 mg mL-1), but did not affect larval exsheathment (LEIA). On the other hand, although SEXF1 and SEXF2 inhibited H. contortus LEIA (IC50 = 1.04 and 0.93 mg mL-1, respectively), they showed even greater inhibition efficiency of H. contortus larval development (IC50 = 0.29 and 0.42 mg mL-1, respectively). To the best of our knowledge, this study is the first to show the anthelmintic activity of plant exudates against a gastrointestinal nematode. Moreover, it suggests the potential of exuded proteins as candidates to negatively interfere with H. contortus life cycle.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6053183 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0200848 | PLOS |
Front Plant Sci
December 2024
College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China.
Considerable biological decline of continuously cropped alfalfa may be tightly linked to rhizosphere metabolism. However, plant-soil feedbacks and age-related metabolic changes in alfalfa stands remain unexplored. The aim of this study was to identify the linkages of rhizosphere and root metabolites, particularly autotoxins and prebiotics, to alfalfa decline under continuous cropping.
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
November 2024
School of Pharmacy, Heilongjiang University of Chinese Medicine Harbin 150040, China Jiamusi College, Heilongjiang University of Chinese Medicine Jiamusi 154007, China.
Aesculus chinensis is an important medicinal and horticultural plant. Its dried mature seeds, known as "Suoluozi", are a well-known traditional Chinese medicine. Aescins are its main active components, possessing multiple pharmacological activities such as anti-inflammatory and anti-exudative effects.
View Article and Find Full Text PDFPlanta
December 2024
College of Resources, Hunan Agricultural University, Changsha, 410125, China.
Overexpression of OsSTP1 enhances the non-structural carbohydrate remobilization in the source, starch accumulation in grains, and the transportation of carbohydrates from source to sink during the filling stage. The sugar transporter protein (STP) is the best-characterized subfamily of the monosaccharide transporter (MST) family and plays critical roles in regulating plant stress tolerance, growth, and development. However, the role of STPs in regulating rice yield is poorly understood.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
Department of Biology, East Carolina University, Greenville, NC, 27858, USA. Electronic address:
Melatonin helps to regulate various physiological processes in plants, including growth, seed germination, and stress responses. However, the mechanism of how melatonin treatments affect soil microbe diversity and ecology, and plant growth needs to be better understood. Here, we report that melatonin coordinates interactions between soil microorganisms and root exudates to create a friendly soil environment for peanut growth under a controlled environment.
View Article and Find Full Text PDFGlob Chang Biol
November 2024
Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!