Hair cell identity establishes labeled lines of directional mechanosensation.

PLoS Biol

Unit of Sensory Biology & Organogenesis, Helmholtz Zentrum München, Munich, Germany.

Published: July 2018

Directional mechanoreception by hair cells is transmitted to the brain via afferent neurons to enable postural control and rheotaxis. Neuronal tuning to individual directions of mechanical flow occurs when each peripheral axon selectively synapses with multiple hair cells of identical planar polarization. How such mechanosensory labeled lines are established and maintained remains unsolved. Here, we use the zebrafish lateral line to reveal that asymmetric activity of the transcription factor Emx2 diversifies hair cell identity to instruct polarity-selective synaptogenesis. Unexpectedly, presynaptic scaffolds and coherent hair cell orientation are dispensable for synaptic selectivity, indicating that epithelial planar polarity and synaptic partner matching are separable. Moreover, regenerating axons recapitulate synapses with hair cells according to Emx2 expression but not global orientation. Our results identify a simple cellular algorithm that solves the selectivity task even in the presence of noise generated by the frequent receptor cell turnover. They also suggest that coupling connectivity patterns to cellular identity rather than polarity relaxes developmental and evolutionary constraints to innervation of organs with differing orientation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6067750PMC
http://dx.doi.org/10.1371/journal.pbio.2004404DOI Listing

Publication Analysis

Top Keywords

hair cell
12
hair cells
12
cell identity
8
labeled lines
8
hair
6
identity establishes
4
establishes labeled
4
lines directional
4
directional mechanosensation
4
mechanosensation directional
4

Similar Publications

BMP4 regulates differentiation of nestin-positive stem cells into melanocytes.

Cell Mol Life Sci

January 2025

Department of Anesthesiology, Shenzhen Children's Hospital, Yitian Road 7019, Shenzhen, 518000, China.

Hair follicle (HF) development and pigmentation are complex processes governed by various signaling pathways, such as TGF-β and FGF signaling pathways. Nestin + (neural crest like) stem cells are also expressed in HF stem cells, particularly in the bulge and dermal papilla region. However, the specific role and differentiation potential of these Nestin-positive cells within the HF remain unclear, especially regarding their contribution to melanocyte formation and hair pigmentation.

View Article and Find Full Text PDF

Liaoning cashmere goat is an outstanding breed in China primarily for cashmere production, with strict controls against genetic outflow. Melatonin(MT) is a key factor affecting cashmere growth, and preliminary transcriptome sequencing indicated that melatonin upregulates the expression of the PIP5K1A gene in skin fibroblasts. To predict the physicochemical properties of PIP5K1A in Liaoning cashmere goats, ascertain the tissue localization of PIP5K1A in their skin, and explore the role and mechanism of PIP5K1A in the proliferation of skin fibroblasts.

View Article and Find Full Text PDF

Direct reprogramming of human fibroblasts into hair-inducing dermal papilla cell-like cells by a single small molecule.

Biochem Pharmacol

January 2025

Department of Anesthesiology, Shenzhen Children's Hospital, Yitian Road 7019, Shenzhen 518000, China. Electronic address:

Dermal papilla cells (DPCs) are a crucial subset of mesenchymal cells in the skin responsible for regulating hair follicle development and growth, making them invaluable for cell-based therapies targeting hair loss. However, obtaining sufficient DPCs with potent hair-inducing abilities remains a persistent challenge. In this study, the Food and Drug Administration (FDA)-approved drug library was utilized to screen small molecules capable of reprogramming readily accessible human skin fibroblasts into functional DPCs.

View Article and Find Full Text PDF

Traditionally, dermatological education emphasizes hair, skin and nails in its curriculum. There is a practice gap with regard to knowledge of normal oral mucosa variants, performance of the oral examination, and competence in diagnosing and treating oral mucosal disorders. The oral mucosa falls within the purview of dermatology.

View Article and Find Full Text PDF

Ligand-Independent Vitamin D Receptor Actions Essential for Keratinocyte Homeostasis in the Skin.

Int J Mol Sci

January 2025

Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu 939-0398, Toyama, Japan.

Recently, we demonstrated that the alopecia observed in vitamin D receptor gene-deficient (-KO) rats is not seen in rats with a mutant VDR(R270L/H301Q), which lacks ligand-binding ability, suggesting that the ligand-independent action of VDR plays a crucial role in maintaining the hair cycle. Since -KO rats also showed abnormalities in the skin, the relationship between alopecia and skin abnormalities was examined. To clarify the mechanism of actions of vitamin D and VDR in the skin, protein composition, and gene expression patterns in the skin were compared among -KO, -R270L/H301Q, and wild-type (WT) rats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!