Clofazimine (CLZ) is an antibiotic with a promising behavior against Gram-positive bacteria; however, the drug is completely insoluble in water and accumulates in fat tissues. We explored nanocarriers, labeled and not labeled with rhodamine, consisting of negatively charged sulfobutylether-β-cyclodextrins for CLZ loading. A new oligomeric carrier was obtained cross-linking βCyD with epichlorohydrin followed by sulfonation in a strongly alkaline aqueous medium. The oligomeric carrier has a MW of 53 kDa and forms small nanoparticles of a few tens of nm. With aqueous solutions containing a 25 mg/mL oligomeric carrier, we loaded up to 0.5 mg/mL of drug. The oligomers exhibited a 10-fold better loading capacity compared to monomers and formed nanoparticles with a size in the 20-60 nm range after drug loading. Circular dichroism confirmed encapsulation of the CLZ in the nanocarriers. All carriers with or without CLZ are not cytotoxic up to 1 μM, while CLZ alone is highly cytotoxic at the same concentration. The drug has IC values below 100 nM against S. epidermidis. The same holds true also for clinical isolates of S. epidermidis, some displaying MDR. So, the selectivity index significantly increased for CLZ/carrier systems compared to the drug alone. Taken all together, our results open new avenues for the clinical application of this antibiotic.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.molpharmaceut.8b00321 | DOI Listing |
Nat Commun
January 2025
Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Vangl is a planar cell polarity (PCP) core protein essential for aligned cell orientation along the epithelial plane perpendicular to the apical-basal direction, which is important for tissue morphogenesis, development and collective cell behavior. Mutations in Vangl are associated with developmental defects, including neural tube defects (NTDs), according to human cohort studies of sporadic and familial cases. The complex mechanisms underlying Vangl-mediated PCP signaling or Vangl-associated human congenital diseases have been hampered by the lack of molecular characterizations of Vangl.
View Article and Find Full Text PDFJ Biol Chem
December 2024
Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL, USA. Electronic address:
The sarco(endo)plasmic reticulum Ca ATPase (SERCA) is a membrane transporter that creates and maintains intracellular Ca stores. In the heart, SERCA is regulated by an inhibitory interaction with the monomeric form of the transmembrane micropeptide phospholamban (PLB). PLB also forms avid homo-pentamers, and dynamic exchange of PLB between pentamers and SERCA is an important determinant of cardiac responsiveness to exercise.
View Article and Find Full Text PDFCommun Biol
December 2024
Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, F-33600, Pessac, France.
Remorins are multifunctional proteins, regulating immunity, development and symbiosis in plants. When associating to the membrane, remorins sequester specific lipids into functional membrane nanodomains. The multigenic protein family contains six groups, classified upon their protein-domain composition.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2024
School of Sports Medicine and Health, Chengdu Sport University, Chengdu, China. Electronic address:
Chronic low-grade inflammation is a characteristic of diabetes, which often culminates in cardiovascular events including myocardial damage, thereby increasing the risk of debilitating cardiac complications. The mitochondria-derived peptide MOTS-c regulates glucose and lipid metabolism while improving insulin resistance, making it a potential candidate for the treatment of diabetes and cardiovascular diseases. We investigated the impact of MOTS-c on cardiac structure and inflammation in diabetic rats induced by a high-sugar-fat diet combined with low-dose streptozotocin (30 mg/kg, i.
View Article and Find Full Text PDFThe profound stability of bacterial spores makes them a promising platform for biotechnological applications like biocatalysis, bioremediation, drug delivery, etc. However, though the spore is composed of >40 proteins, only ∼12 have been explored as fusion carriers for protein display. Here, we assessed the suitability of 33 spore proteins (SPs) as enzyme display carriers by direct allele tagging at native genomic loci.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!