The integration of LC-MS and NMR for the analysis of low molecular weight trace analytes in complex matrices.

Mass Spectrom Rev

Barnett Institute of Chemical and Biological Analysis and Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts.

Published: March 2020

AI Article Synopsis

Article Abstract

This review discusses the integration of liquid chromatography (LC), mass spectrometry (MS), and nuclear magnetic resonance (NMR) in the comprehensive analysis of small molecules from complex matrices. We first discuss the steps taken toward making the three technologies compatible, so as to create an efficient analytical platform. The development of online LC-MS-NMR, highlighted by successful applications in the profiling of highly concentrated analytes (LODs 10 μg) is discussed next. This is followed by a detailed overview of the alternative approaches that have been developed to overcome the challenges associated with online LC-MS-NMR that primarily stem from the inherently low sensitivity of NMR. These alternative approaches include the use of stop-flow LC-MS-NMR, loop collection of LC peaks, LC-MS-SPE-NMR, and offline NMR. The potential and limitations of all these approaches is discussed in the context of applications in various fields, including metabolomics and natural product discovery.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6339611PMC
http://dx.doi.org/10.1002/mas.21575DOI Listing

Publication Analysis

Top Keywords

complex matrices
8
online lc-ms-nmr
8
alternative approaches
8
integration lc-ms
4
nmr
4
lc-ms nmr
4
nmr analysis
4
analysis low
4
low molecular
4
molecular weight
4

Similar Publications

Background: Ochratoxin A (OTA) is toxic secondary metabolites produced by fungi and can pose a serious threat to food safety and human health. Due to the high stability and toxicity, OTA contamination in agricultural products is of great concern. Therefore, the development of a highly sensitive and reliable OTA detection method is crucial to ensure food safety.

View Article and Find Full Text PDF

Improving Sensitivity and Resolution of Dendrimer Identification in MALDI-TOF Mass Spectrometry Using Varied Matrix Combinations.

Polymers (Basel)

January 2025

Departamento de Ciencias Preclínicas, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile.

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is a well-known technique for polymer analysis, particularly for determining the molecular weight and structural details of dendrimers. In this study, we evaluated the performance of various matrices, such as 2',4',6'-trihydroxyacetophenone (THAP), α-cyano-4-hydroxycinnamic acid (HCCA), and sinapinic acid (SA), and their combinations, on the sensitivity and resolution of poly(amidoamine) (PAMAM) dendrimers of different generations (G3.0, G4.

View Article and Find Full Text PDF

This review examines the recent advancements and unique properties of polymer-inorganic hybrid materials formed through coordination bonding (Class II hybrids), which enable enhanced functionality and stability across various applications. Here, we categorize these materials based on properties gained through complexation, focusing on electrical conductivity, thermal stability, photophysical characteristics, catalytic activity, and nanoscale self-assembly. Two major synthetic approaches to making these hybrids include homogeneous and heterogeneous methods, each with distinct tradeoffs: Homogeneous synthesis is straightforward but requires favorable mixing between inorganic and polymer species, which are predominantly water-soluble complexes.

View Article and Find Full Text PDF

Environmental Applications of Mass Spectrometry for Emerging Contaminants.

Molecules

January 2025

Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN 55108, USA.

Emerging contaminants (ECs), encompassing pharmaceuticals, personal care products, pesticides, and industrial chemicals, represent a growing threat to ecosystems and human health due to their persistence, bioaccumulation potential, and often-unknown toxicological profiles. Addressing these challenges necessitates advanced analytical tools capable of detecting and quantifying trace levels of ECs in complex environmental matrices. This review highlights the pivotal role of mass spectrometry (MS) in monitoring ECs, emphasizing its high sensitivity, specificity, and versatility across various techniques such as Gas Chromatography-Mass Spectrometry (GC-MS), Liquid Chromatography-Mass Spectrometry (LC-MS), and High-Resolution Mass Spectrometry (HR-MS).

View Article and Find Full Text PDF

Species of the genus are known for their pharmacological properties and essential oils, the chemical composition of which remains inadequately studied. In this work, GC-MS analysis, synthesis, and spectral techniques (UV, IR, MS, and NMR) were employed to identify 83 constituents in the essential oil from roots, which accounted for 98.1% of the total GC-peak area.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!