Glioblastoma is the most frequent and aggressive primary malignant tumor of the central nervous system with a gloomy prognosis. Platinum derivatives and one among them, cisplatin, exhibited promising results when locally administered into the brain of glioblastoma bearing rats. Nanovectorization of anticancer agents through polymeric nanoparticles may even promote drug accumulation within cells, thus concentrating the drug efficiently at its target. Anchorage of gadolinium complexes on the corona of such smart drug delivery systems could further allow magnetic resonance imaging (MRI) monitoring of the nanoplatform biodistribution in the damaged parenchyma and its therapeutic benefit. For this purpose, a biocompatible amphiphilic triblock copolymer, made of degradable polyester and polycarbonate and bioeliminable polyethylene oxide (PEO), was synthesized by successive ring-opening polymerizations. After micellization in water, gadolinium complexes were grafted onto the PEO micelle corona and the carboxylate functions, located at the surface of the micelle's core, were able to cross-link with Pt(ii) complexes. A macromolecular prodrug was therefore recovered in which more than one third of the carboxylate functions were linked to a platinum atom. By this strategy, stable cisplatin cross-linked nanoparticles were formulated with a mean size in the range of 100.63 ± 12.04 nm consistent with biological investigations. Relaxometry measurements both in water and in plasma at 7 T, 25 °C, confirmed the intrinsic potential of these hybrid nanoparticles as alternative MRI contrast agents with a substantial increase in the r2/r1 ratio by a factor of 3.3 and 2.7, respectively, compared to the conventional low molar mass Gd-DTPA. As a result, their infusion within the striatum of glioblastoma-bearing mice resulted in a hypersignal on T2-weighted MR images that persisted over time. Ultimately, the formulated prodrug exhibited up to 50-fold increased accumulation in human glioblastoma cell lines and up to 32-fold enhanced subsequent Pt-DNA adduct formation in comparison with free cisplatin, thus supporting the potential of this innovative bimodal tool for further applications.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8bm00346gDOI Listing

Publication Analysis

Top Keywords

glioblastoma cell
8
cell lines
8
gadolinium complexes
8
carboxylate functions
8
hybrid gd/cisplatin
4
gd/cisplatin cross-linked
4
cross-linked polymer
4
nanoparticles
4
polymer nanoparticles
4
nanoparticles enhance
4

Similar Publications

CircPRKD3-loaded exosomes concomitantly elicit tumor growth inhibition and glioblastoma microenvironment remodeling via inhibiting STAT3 signaling.

Neuro Oncol

January 2025

Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P.R. China.

Background: Glioblastoma stem cells (GSCs) and their exosomes (exos) are involved in shaping the immune microenvironment, which is important for tumor invasion and recurrence. However, studies involving GSC-derived exosomal circular RNAs (GDE-circRNAs) in regulating tumor microenvironment (TME) remain unknown. Here, we comprehensively evaluated the significance of a novel immune-related GDE-circRNA in glioma microenvironment.

View Article and Find Full Text PDF

Investigating POU3F4 in cancer: Expression patterns, prognostic implications, and functional roles in tumor immunity.

Heliyon

January 2025

Department of Cardiothoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng, 224002, China.

Research has demonstrated that POU3F4 is integral to various cancers, in addition to its significance in inner ear development, pancreatic differentiation, as well as neural stem cell differentiation. Nevertheless, comprehensive pan-cancer analyses focusing on POU3F4 remain limited. This study aims to assess the prognostic value of POU3F4 in thirty-three cancers and explore its immune-related functions.

View Article and Find Full Text PDF

Background And Purpose: Diffusion tensor imaging (DTI) has been proposed to guide the anisotropic expansion from gross tumor volume to clinical target volume (CTV), aiming to integrate known tumor spread patterns into the CTV. This study investigate the potential of using a DTI atlas as an alternative to patient-specific DTI for generating anisotropic CTVs.

Materials And Methods: The dataset consisted of twenty-eight newly diagnosed glioblastoma patients from a Danish national DTI protocol with post-operative T1-contrast and DTI imaging.

View Article and Find Full Text PDF

Background: To date, there is no effective cure for the highly malignant brain tumor glioblastoma (GBM). GBM is the most common, aggressive central nervous system tumor (CNS). It commonly originates in glial cells such as microglia, oligodendroglia, astrocytes, or subpopulations of cancer stem cells (CSCs).

View Article and Find Full Text PDF

Due to the lack of effective therapeutic approach, glioblastoma (GBM) remains one of the most malignant brain tumour. By in vitro investigations on primary GBM stem cells, we highlighted one of the underlying mechanisms of drug resistance to alkylating agents, the DNA damage responses. Here, flow cytometric analysis and viability and repopulation assays were used to assess the long-term cytotoxic effect induced by the administration of a fourth-generation platinum prodrug, the (OC-6-44)-acetatodiamminedichlorido(2-(2-propynyl)octanoato) platinum(IV) named Pt(IV)Ac-POA, in comparison to the most widely used Cisplatin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!