Spontaneous Biomacromolecule Absorption and Long-Term Release by Graphene Oxide.

ACS Omega

School of Chemical & Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.

Published: May 2018

Biomacromolecule loading is the popular research in the biomedical field. To control the loading amount and releasing profile, various materials and fabrication techniques were developed. In this study, layer-by-layer assembly of multilayer films between collagen (Col) and graphene oxide (GO) was used to control the release of the loading molecule. By mixing GO into the system, ovalbumin (OVA) can be spontaneously adsorbed onto the GO sheet (denoted as GO/OVA) via the hydrophobic interaction. Two kinds of multilayer films (Col/GO/OVA and Col/GO/OVA) were fabricated. The thickness growth curve, quantitative of each layer adsorption, film morphology, stability, cell viability, and OVA release from multilayer films were investigated. The result has shown excellent film stability, macromolecule loading, and sustained release because of GO ability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6045413PMC
http://dx.doi.org/10.1021/acsomega.8b00537DOI Listing

Publication Analysis

Top Keywords

multilayer films
12
graphene oxide
8
spontaneous biomacromolecule
4
biomacromolecule absorption
4
absorption long-term
4
release
4
long-term release
4
release graphene
4
oxide biomacromolecule
4
loading
4

Similar Publications

Coaxial Direct Ink Writing of Cholesteric Liquid Crystal Elastomers in 3D Architectures.

Adv Mater

January 2025

Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA, 19104, USA.

Cholesteric liquid crystal elastomers (CLCEs) hold great promise for mechanochromic applications in anti-counterfeiting, smart textiles, and soft robotics, thanks to the structural color and elasticity. While CLCEs are printed via direct ink writing (DIW) to fabricate free-standing films, complex 3D structures are not fabricated due to the opposing rheological properties necessary for cholesteric alignment and multilayer stacking. Here, 3D CLCE structures are realized by utilizing coaxial DIW to print a CLC ink within a silicone ink.

View Article and Find Full Text PDF

We have proposed and developed a method for measuring the thermal conductivity of highly efficient thermal conductors. The measurement method was tested on pure metals with high thermal conductivity coefficients: aluminum (99.999 wt.

View Article and Find Full Text PDF

Developing thin-film sheets made of oxide-based solid electrolytes is essential for fabricating surface-mounted ultracompact multilayer oxide solid-state batteries. To this end, solid-electrolyte slurry must be optimized for excellent dispersibility. Although oxide-based solid electrolytes for multilayer structures require sintering, high processing temperatures cause problems such as Li-ion volatilization and reactions with graphite anodes.

View Article and Find Full Text PDF

Multilayered organosiloxane films with self-healing ability converted from block copolymer nanocomposites.

Chem Commun (Camb)

January 2025

Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.

Self-healable, multilayered organosiloxane films were prepared thermal conversion of lamellar organosiloxane films containing poly(ethylene oxide)-polydimethylsiloxane-poly(ethylene oxide) block copolymers. The incorporation of silanolate groups enabled crack healing through dynamic siloxane equilibration. The enhanced hardness and suppressed cyclic siloxane formation resulting from the multilayered structure exhibit potential for practical applications.

View Article and Find Full Text PDF

Multilayer laminated films are widely used as food packaging materials. The substances contained in these films have the potential to migrate into food in contact, but the actual situation is unknown. In this study, we first determined the contents of 24 elements in 42 food laminate bags by ICP-OES and ICP-MS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!