Orthogonal Synthetic Zippers as Protein Scaffolds.

ACS Omega

Center for BioMolecular Science and Engineering, U.S. Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, District of Columbia 20375, United States.

Published: May 2018

Protein scaffolds have proven useful for co-localization of enzymes, providing control over stoichiometry and leading to higher local enzyme concentrations, which have led to improved product formation. To broaden their usefulness, it is necessary to have a wide choice of building blocks to mix and match for scaffold generation. Ideally, the scaffold building blocks should function at any location within the scaffold and have high affinity interactions with their binding partners. We examined the utility of orthogonal synthetic coiled coils (zippers) as scaffold components. The orthogonal zippers are coiled coil domains that form heterodimers only with their specific partner and not with other zipper domains. Focusing on two orthogonal zipper pairs, we demonstrated that they are able to function on either end or in the middle of a multiblock assembly. Surface plasmon resonance was employed to assess the binding kinetics of zipper pairs placed at the start, middle, or end of a construct. Size-exclusion chromatography was used to demonstrate the ability of a scaffold with two zipper domains to bind their partners simultaneously. We then expanded the study to examine the binding kinetics and cross-reactivities of three additional zipper pairs. By validating the affinities and specificities of synthetic zipper pairs, we demonstrated the potential for zipper domains to provide an expanded library of scaffolding parts for tethering enzymes in complex pathways for synthetic biology applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6045340PMC
http://dx.doi.org/10.1021/acsomega.8b00156DOI Listing

Publication Analysis

Top Keywords

zipper pairs
16
zipper domains
12
orthogonal synthetic
8
protein scaffolds
8
building blocks
8
pairs demonstrated
8
binding kinetics
8
zipper
7
scaffold
5
orthogonal
4

Similar Publications

The synaptonemal complex (SC) is a protein-rich structure essential for meiotic recombination and faithful chromosome segregation. Acting like a zipper to paired homologous chromosomes during early prophase I, the complex is a symmetrical structure where central elements are connected on two sides by the transverse filaments to the chromatin-anchoring lateral elements. Despite being found in most major eukaryotic taxa implying a deeply conserved evolutionary origin, several components of the complex exhibit unusually high rates of sequence turnover.

View Article and Find Full Text PDF

Transcription factors (TFs) are the main regulators of eukaryotic gene expression. The cooperative binding of at least two TFs to genomic DNA is a major mechanism of transcription regulation. Massive analysis of the co-occurrence of overrepresented pairs of motifs for different target TFs studied in ChIP-seq experiments can clarify the mechanisms of TF cooperation.

View Article and Find Full Text PDF

In recent years, a great interest has been focused on the prebiotic origin of nucleic acids and life on Earth. An attractive idea is that life was initially based on an autocatalytic and autoreplicative RNA (the RNA-world). RNA duplexes are right-handed helical chains with antiparallel orientation, but the rationale for these features is not yet known.

View Article and Find Full Text PDF

The 'genetic zipper' method offers a cost-effective solution for aphid control.

Front Insect Sci

December 2024

Department of General Biology and Genetics, Institute of Biochemical Technologies, Ecology and Pharmacy, V.I. Vernadsky Crimean Federal University, Simferopol, Republic of Crimea.

Twenty years ago, it was difficult to imagine the use of nucleic acids in plant protection as insecticides, but today it is a reality. New technologies often work inefficiently and are very expensive; however, qualitative changes occur during their development, making them more accessible and work effectively. Invented in 2008, contact oligonucleotide insecticides (olinscides, or DNA insecticides) based on the CUAD (contact unmodified antisense DNA) platform have been substantially improved and rethought.

View Article and Find Full Text PDF

The synaptonemal complex (SC) is a zipper-like protein structure that aligns homologous chromosome pairs and regulates recombination during meiosis. Despite its conserved appearance and function, how synapsis occurs between chromosome axes remains elusive. Here, we demonstrate that Polo-like kinases (PLKs) phosphorylate a single conserved residue in the disordered C-terminal tails of two paralogous SC subunits, SYP-5 and SYP-6, to establish an electrostatic interface between the SC central region and chromosome axes in C.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!