In the many published theories on the retention in reversed-phase chromatography (RPC), the focus is generally on the effect of the concentration of the mobile phase modulator(s), although temperature is known to have a significant influence both on the retention and on the selectivity between the adsorbates. The aim of this study was to investigate and model the combined effects of the temperature and the modulator concentrations on RPC of three insulin variants. KCl and ethanol were used as mobile phase modulators, and the experiments were performed on two different adsorbents, with C and C ligands. The temperature dependence was investigated for the interval 10-40 °C and at two different concentrations of each modulator. The model is derived from the expression for the adsorption equilibrium, which assumes that ethanol is adsorbed to the ligands and displaced by the insulin molecules, similar to the displacement of counterions in the steric mass-action model for ion-exchange chromatography. A good model fit to the new linear-range retention data was achieved by only adding and calibrating three parameters for the temperature dependence of the equilibrium. We found that a lower temperature results in a longer retention time for all adsorbates, adsorbents, and modulator concentrations used in this study, indicating that the adsorption process is enthalpy-driven. A comparison of the different contributions to the temperature dependence revealed that the large contribution from the equilibrium constant is dampened by the significant contributions of the opposite sign from the changes in activity coefficients of insulins and ethanol. Neglect of these effects when comparing different adsorbents and modulators might yield incorrect conclusions because the equilibrium constant varies with both, whereas the activity coefficients should be independent of the adsorbent. As expected, the conditions that promote higher retention also give a higher selectivity between the adsorbates. Nonetheless, in relation to its effect on the retention, the influence of the KCl concentration on the selectivity was significantly stronger than that of the temperature or that of the ethanol concentration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6044953 | PMC |
http://dx.doi.org/10.1021/acsomega.7b01527 | DOI Listing |
PLoS One
January 2025
School of Mathematics and Statistics, College of Science, Rochester Institute of Technology, Rochester, New York, United States of America.
This study presents a novel non-autonomous mathematical model to explore the intricate relationship between temperature and desert locust population dynamics, considering the influence of both solitarious and gregarious phases across all life stages. The model incorporates temperature-dependent parameters for key biological processes, including egg development, hopper growth, adult maturation, and reproduction. Theoretical analysis reveals the model's capacity for complex dynamical behaviors, such as multiple stable states and backward bifurcations, suggesting the potential for sudden and unpredictable population shifts.
View Article and Find Full Text PDFPLoS One
January 2025
Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands.
Thrips tabaci is the main thrips species affecting onion and related species. It is a cryptic species complex comprising three phylogenetic groups characterized by different reproductive modes (thelytoky or arrhenotoky) and host plant specialization. Thrips tabaci populations vary widely in genetic diversity, raising questions about the factor(s) that drive this diversity.
View Article and Find Full Text PDFInorg Chem
January 2025
Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim 45470, Germany.
Reductive phosphatization is an original synthesis approach to the formation of transition metal phosphates (TMPs). The approach enables the synthesis of known TMPs, but also new compounds, especially with transition metals in a low-valent state. However, to exploit the enormous potential of this synthesis method, it is necessary to identify and characterize all of the potential intermediates and final synthesis products.
View Article and Find Full Text PDFSmall
January 2025
Key Lab of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China.
N-type BiTeSe(BTS) is a state-of-the-art thermoelectric material owing to its excellent thermoelectric properties near room temperatures for commercial applications. However, its performance is restricted by its comparatively low figure of merit ZT. Here, it is shown that a 14% increase in power factor (PF) (at 300 K) can be reached through incorporation of inorganic GaAs nanoparticles due to enhanced thermopower originating from the energy-dependent carrier scattering.
View Article and Find Full Text PDFChemistry
January 2025
University of Leipzig, Physics and Geoscience, Linnestr. 5, 4103, Leipzig, GERMANY.
The development of smart materials capable of separating dihydrogen isotopologues has risen recently. Among potential candidates, the flexible MIL-53 (Al) has been gaining attention due to its structural flexibility providing the so-called ''breathing mechanism'' that can be useful to separate hydrogen isotopologues selectively. In the present work, an in situ continuous wave electron paramagnetic resonance investigation has been proven as a sensitive technique to follow the isotopologue-selective adsorption-desorption of dihydrogen species on the paramagnetic metal-doped MIL-53 (Al0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!