Design and Evaluation of Short Self-Assembling Depsipeptides as Bioactive and Biodegradable Hydrogels.

ACS Omega

Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States.

Published: February 2018

Described herein is the design of a cell-adherent and degradable hydrogel. Our goal was to create a self-assembling, backbone ester-containing analogue of the cell adhesion motif, arginine-glycine-aspartic acid (RGD). Two depsipeptides containing Fmoc (-(fluorenyl)-9-methoxycarbonyl), Fmoc-FR-Glc-D, and Fmoc-F-Glc-RGD (where "Glc" is glycolic acid) were designed based on the results of integrin-binding affinity and cell interaction analyses. Two candidate molecules were synthesized, and their gelation characteristics, degradation profiles, and ability to promote cell attachment were analyzed. We found that ester substitution within the RGD sequence significantly decreases the integrin-binding affinity and subsequent cell attachment, but when the ester moiety flanks the bioactive sequence, the molecule can maintain its integrin-binding function while permitting nonenzymatic hydrolytic degradation. A self-assembled Fmoc-F-Glc-RGD hydrogel showed steady, linear degradation over 60 days, and when mixed with Fmoc-diphenylalanine (Fmoc-FF) for improved mechanical stiffness, the depsipeptide gel exhibited improved cell attachment and viability. Though the currently designed depsipeptide has several inherent limitations, our results indicate the potential of depsipeptides as the basis for biologically functional and degradable self-assembling hydrogel materials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6044717PMC
http://dx.doi.org/10.1021/acsomega.7b01641DOI Listing

Publication Analysis

Top Keywords

cell attachment
12
integrin-binding affinity
8
cell
5
design evaluation
4
evaluation short
4
short self-assembling
4
self-assembling depsipeptides
4
depsipeptides bioactive
4
bioactive biodegradable
4
biodegradable hydrogels
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!