Biofilms causing medical conditions or interfering with technical applications can prove undesirably resistant to silver nanoparticle (AgNP)-based antimicrobial treatment, whereas beneficial biofilms may be adversely affected by the released silver nanoparticles. Isolated biofilm matrices can induce reduction of silver ions and stabilization of the formed nanosilver, thus altering the exposure conditions. We thus study the reduction of silver nitrate solution in model experiments under chemically defined conditions as well as in stream biofilms. Formed silver nanoparticles are characterized by state-of-the art methods. We find that isolated biopolymer fractions of biofilm organic matrix are capable of reducing ionic Ag, whereas other isolated fractions are not, meaning that biopolymer fractions contain both reducing agent and nucleation seed sites. In all of the investigated systems, we find that silver nanoparticle-biopolymer interface is dominated by carboxylate functional groups. This suggests that the mechanism of nanoparticle formation is of general nature. Moreover, we find that glucose concentration within the biofilm organic matrix correlates strongly with the nanoparticle formation rate. We propose a simple mechanistic explanation based on earlier literature and the experimental findings. The observed generality of the extracellular polymeric substance/AgNP system could be used to improve the understanding of impact of Ag on aqueous ecosystems, and consequently, to develop biofilm-specific medicines and bio-inspired water decontaminants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6044607 | PMC |
http://dx.doi.org/10.1021/acsomega.7b00982 | DOI Listing |
J Indian Soc Pedod Prev Dent
October 2024
Department of Pediatric and Preventive Dentistry, Santosh Deemed to be University, Santosh Dental College and Hospital, Ghaziabad, Uttar Pradesh, India.
Chem Asian J
January 2025
Universidad Austral de Chile, Instituto de Ciencias Químicas, CHILE.
Plasmonic materials can be utilized as effective platforms to enhance luminescent signals of luminescent metal nanoclusters (LMNCs). Both surface enhanced fluorescence (SEF) and shell-isolated nanoparticle-enhanced fluorescence (SHINEF) strategies take advantage of the localized and increased external electric field created around the plasmonic metal surface when excited at or near their characteristic plasmonic resonance. In this context, we present an experimental and computational study of different plasmonic composites, (Ag) Ag@SiO2 and (Au) Au@SiO2 nanoparticles, which were used to enhance the luminescent signal of Au nanoclusters coated with glutathione (GSH) molecule (Au25GSH NCs).
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Centro de Investigación y Desarrollo de Nanomedicinas (CIDeN), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, B1876 Bernal, Argentina.
The properties of two hybrid nanoarchaeosomes (hybrid nanoARCs) made of archaeolipids extracted from the halophilic archaea and combining the properties of archaeolipid bilayers with metallic nanoparticles are explored here. BS-nanoARC, consisting of a nanoARC loaded with yerba mate ( extract (YME)-biogenic silver nanoparticles (BSs), and [BS + BS-nanoARC], consistent of a BS-nanoARC core covered by an outer shell of BSs, were structurally characterized and their therapeutic activities screened. By employing 109 ± 5 µg gallic acid equivalents (GAEs) and 73.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Chongqing Academy of Metrology and Quality Inspection, Chongqing 401120, China.
Dynamic hydrogels have attracted considerable attention in the application of flexible electronics, as they possess injectable and self-healing abilities. However, it is still a challenge to combine high conductivity and antibacterial properties into dynamic hydrogels. In this work, we fabricated a type of dynamic hydrogel based on acylhydrazone bonds between thermo-responsive copolymer and silver nanoparticles (AgNPs) functionalized with hydrazide groups.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Botany and Microbiology Department, Faculty of Science, Damanhour University, Damanhour 22511, Egypt.
Biosorbents have demonstrated considerable potential for the remediation of metals in aqueous environments. An aqueous extract of L. (EiE) and its extract-coated silver nanoparticles have been prepared and employed for the removal of iron.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!