Saccharide Primers Comprising Xylosyl-Serine Primed Phosphorylated Oligosaccharides Act as Intermediates in Glycosaminoglycan Biosynthesis.

ACS Omega

Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohokuku, Yokohama, Kanagawa 223-8522, Japan.

Published: July 2017

β-Xylosides have been used as an artificial initiator of glycosaminoglycan (GAG) biosynthesis to investigate its mechanism and to obtain these oligosaccharides. In GAG biosynthesis, phosphorylation on the xylose residue is a crucial step. However, little attention has been paid to phosphorylated oligosaccharides obtained from β-xylosides. In a previous study, we demonstrated that a novel β-xyloside, -lauryl--β-xyloyranosyl-serinamide (Xyl-Ser-C12), had excellent GAG-type oligosaccharide priming ability, whereas phosphorylated oligosaccharides were not found in the primed oligosaccharides. This study examines the potential of Xyl-Ser-C12 and three of its derivatives for use as a probe to investigate the GAG biosynthesis mechanism. Glycosylated products were obtained by incubation of the β-xylosides in normal human dermal fibroblast cells and compared by liquid chromatography-electrospray ionization-mass spectrometry. By the optimized method to detect phosphorylated products, Xyl-Ser-C12 was demonstrated to prime not only GAG-type oligosaccharides but also a variety of xylose-phosphorylated products. Among the synthesized β-xylosides, those consisting of xylosyl-serine primed large amounts of phosphorylated and GAG-type oligosaccharides, whereas the others primed sialyloligosaccharides mainly. The majority of the phosphorylated products were considered to be GAG intermediates, which are less observed in nature. To our best knowledge, this is the first report showing that the amino acid residues around the Xyl attachment position strongly affect the phosphorylation efficiency and GAG chain-priming ability of β-xylosides. This study leads to the possibility of the use of β-xyloside as a probe to observe the Xyl phosphorylation process during GAG biosynthesis and investigate comparative glycosaminoglycomics between different cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6044892PMC
http://dx.doi.org/10.1021/acsomega.7b00073DOI Listing

Publication Analysis

Top Keywords

gag biosynthesis
16
phosphorylated oligosaccharides
12
xylosyl-serine primed
8
biosynthesis investigate
8
oligosaccharides primed
8
phosphorylated products
8
gag-type oligosaccharides
8
oligosaccharides
7
phosphorylated
6
gag
6

Similar Publications

Retrotransposon Gag-like (RTL) 8A, 8B and 8C are eutherian-specific genes derived from a certain retrovirus. They cluster as a triplet of genes on the X chromosome, but their function remains unknown. Here, we demonstrate that and play important roles in the brain: their double knockout (DKO) mice not only exhibit reduced social responses and increased apathy-like behaviour, but also become obese from young adulthood, similar to patients with late Prader-Willi syndrome (PWS), a neurodevelopmental genomic imprinting disorder.

View Article and Find Full Text PDF

Retroviruses carry a genomic intron-containing RNA with a long structured 5'-untranslated region, which acts either as a genome encapsidated in the viral progeny or as an mRNA encoding the key structural protein, Gag. We developed a single-molecule microscopy approach to simultaneously visualize the viral mRNA and the nascent Gag protein during translation directly in the cell. We found that a minority of the RNA molecules serve as mRNA and that they are translated in a fast and efficient process.

View Article and Find Full Text PDF

Retroviral genome selection and virion assembly remain promising targets for novel therapeutic intervention. Recent studies have demonstrated that the Gag proteins of Rous sarcoma virus (RSV) and human immunodeficiency virus type-1 (HIV-1) undergo nuclear trafficking, colocalize with nascent genomic viral RNA (gRNA) at transcription sites, may interact with host transcription factors, and display biophysical properties characteristic of biomolecular condensates. In the present work, we utilized a controlled in vitro condensate assay and advanced imaging approaches to investigate the effects of interactions between RSV Gag condensates and viral and nonviral RNAs on condensate abundance and organization.

View Article and Find Full Text PDF

Despite the success of combination antiretroviral therapy (cART) to suppress HIV replication, HIV persists in a long-lived reservoir that can give rise to rebounding viremia upon cART cessation. The translationally active reservoir consists of HIV-infected cells that continue to produce viral proteins even in the presence of cART. These active reservoir cells are implicated in the resultant viremia upon cART cessation and likely contribute to chronic immune activation in people living with HIV (PLWH) on cART.

View Article and Find Full Text PDF

Chemical modification of naturally derived glycosaminoglycans (GAGs) expands their potential utility for applications in soft tissue repair and regenerative medicine. Here we report the preparation of a novel crosslinked chondroitin sulfate (~200 to 2000 kilodaltons) that is both soluble in aqueous solution and microfilterable. We refer to these materials as "SuperGAGs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!