A new approach to sensing and imaging hydrogen peroxide (HO) was developed using microcapsule-based dual-emission ratiometric luminescent biosensors. Bovine serum albumin-capped gold nanoclusters (BSA-AuNCs) sensitive to HO were coencapsulated with insensitive FluoSpheres (FSs) within polymeric capsules fabricated via the layer-by-layer method. Under single-wavelength excitation, the microcapsule-based biosensors exhibited emission bands at ∼516 and ∼682 nm resulting from the FSs and BSA-AuNCs, respectively. The polyelectrolyte multilayers lining the microcapsules were effective in protecting BSA-AuNCs from the degradation catalyzed by proteases (chymotrypsin, trypsin, papain, and proteinase K) and subsequent luminescent quenching, overcoming a key limitation of prior BSA-AuNC-based sensing systems. The luminescent response of the sensors was also found to be independent of local changes in pH (5-9). Quenching of the AuNCs in the presence of HO enabled the spectroscopic quantification and imaging of changes in HO concentration from 0 to 1 mM. The microcapsule sensors were easily phagocytized by murine macrophage cells (RAW 264.7), were effective as intracellular HO imaging probes, and were successfully used to detect local release of HO in response to an external chemical stimulus.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6044823 | PMC |
http://dx.doi.org/10.1021/acsomega.7b00199 | DOI Listing |
Nanoscale
January 2025
Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, 20014, Spain.
Biomolecule-stabilized gold nanoclusters (AuNCs) have become functional nanomaterials of interest because of their unique optical properties, together with excellent biocompatibility and stability under biological conditions. In this review, we explore the recent advancements in the application of biomolecular ligands for synthesizing AuNCs. Various synthesis approaches that are employing amino acids, peptides, proteins, and DNA as biomolecular scaffolds are reviewed.
View Article and Find Full Text PDFTalanta
December 2024
College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao, 266042, China. Electronic address:
In this work, a new dual-signal fluorescence strategy based on nano-gold molecular beacon (MB) and in-situ generated silver nano-clusters (NCs) coupled with multiple amplification technique was developed for sensitive detection of miRNA (let-7b). miRNA can recognize both hairpin probe (HP) and auxiliary DNA, inducing dual-cycle amplification-process to release plenty of DNA S2. As the report probe carboxyfluorescein (FAM) was modified on Au nanoparticles (AuNPs), the fluorescent signal was quenched due to the fluorescence resonance energy transfer (FRET).
View Article and Find Full Text PDFAnal Chem
December 2024
Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350122, China.
The extracellular domain (ECD) of human epidermal growth factor receptor 2 (HER2) serves as a promising biomarker for the early diagnosis and treatment of breast cancer (BC). However, due to the heterogeneity of tumors, assessing HER2 status through a core needle biopsy presents significant challenges. In this study, we propose a facile and high-performance electrochemiluminescence immunoassay (ECLIA) platform utilizing a herceptin-encapsulated gold nanoclusters (HER-AuNCs)/(diisopropylamino)ethanol (DIPEA-OH) ECL system for the clinical evaluation of HER2 ECD in BC patients.
View Article and Find Full Text PDFAnal Bioanal Chem
December 2024
College of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, China.
The abnormal expression of acetylcholinesterase (AChE) is linked to the development of various diseases. Accurate determination of AChE activity as well as screening AChE inhibitors (AChEIs) holds paramount importance for early diagnosis and treatment of AChE-related diseases. Herein, a fluorescent and colorimetric dual-channel probe based on gold nanoclusters (AuNCs) and manganese dioxide nanosheets (MnO NSs) was developed.
View Article and Find Full Text PDFTalanta
December 2024
Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China. Electronic address:
Unreasonable or illegal utilization of pesticides may lead to pollution of agricultural products, especially with some persistent but effective pesticides. Hence, there is an urgent need to develop sensitive and rapid methods for pesticide detection to ensure the safety of agricultural products. Herein, a dual-mode ratiometric sensing system utilizing two gold nanoclusters (G/R-AuNCs) was designed and constructed for paraquat (PQ) detection, a typical, highly toxic, widely used pesticide.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!