In this study, glycerol phosphate was introduced into polyurethane (PU) to promote the coating stability of hydroxyapatite (HA) during its mineralization on the PU surface. Glycerol phosphate was successfully conjugated with the PU chain during polymerization. Phosphate groups in glycerol phosphate accelerated the nucleation of HA under calcium phosphate ion-rich conditions (concentrated simulated body fluid), resulting in the enhancement of structural stability. The robust interface between HA and PU also improved mechanical properties. Hydrophilic phosphate groups and bioactive HA improved in vitro cellular responses in terms of the attachment and proliferation of L929 fibroblasts and MC3T3-E1 preosteoblasts. Thus, the highly elastic and bioactive PU-gp-HA could be a promising candidate for tissue engineering applications that experience frequent deformation, including diverse cartilage replacements.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6044611 | PMC |
http://dx.doi.org/10.1021/acsomega.7b00036 | DOI Listing |
Indian Pediatr
January 2025
Department of Pediatric Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India.
Mol Oncol
January 2025
Shanghai Stomatological Hospital & School of Stomatology & Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
Colorectal cancer (CRC) is a prevalent malignant tumor worldwide, with a high mortality rate due to its complex etiology and limited early screening techniques. This study aimed to identify potential biomarkers for early detection of CRC utilizing targeted metabolite profiling of platelet-rich plasma (PRP). Based on multiple reaction monitoring (MRM) mode, liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis identified metabolites in PRP collected from patients with CRC (n = 70) and healthy controls (n = 30).
View Article and Find Full Text PDFNat Cell Biol
January 2025
Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China.
Glucose metabolism has been studied extensively, but the role of glucose-derived excretory glycerol remains unclear. Here we show that hypoxia induces NADH accumulation to promote glycerol excretion and this pathway consumes NADH continuously, thus attenuating its accumulation and reductive stress. Aldolase B accounts for glycerol biosynthesis by forming a complex with glycerol 3-phosphate dehydrogenases GPD1 and GPD1L.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Preventive Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
Remineralization is a common strategy for the repair of early demineralized tooth enamels, but the harsh dynamic oral environment often hampers its efficacy. Rapid remineralization is expected to address this challenge, however, the stabilizers of remineralization materials often resist their transformation required for repair. Here, by dissolving the ions of calcium and phosphate in glycerol-dominant solvents, we obtain the calcium phosphate clusters (1-2 nm), which are stabilized by glycerol (with high viscosity and affinity to clusters), but can perform a fast enamel repair via the water-triggered transformation in both static and dynamic environments.
View Article and Find Full Text PDFJ Genet Genomics
December 2024
Institute of Genetics and Developmental Biology, Key Laboratory of Seed Innovation, Chinese Academy of Sciences, Beijing 100101, China. Electronic address:
Saline-alkali soil severely reduces the productivity of crops, including maize (Zea mays). Although several genes associated with saline-alkali tolerance have been identified in maize, the underlying regulatory mechanism remains elusive. Here, we report a direct link between colonization by arbuscular mycorrhizal fungi (AMF) and saline-alkali tolerance in maize.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!