Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A great interest has been shown in the injectable scaffolds for cartilage tissue regeneration because it can fill irregularly shaped defects easily through minimally invasive surgical treatments. Herein, we developed a new injectable three-dimensional (3D) alginate hydrogel loaded with biodegradable porous poly(ε-caprolactone)--poly(ethylene glycol)--poly(ε-caprolactone) microspheres (MPs/Alg) as the calcium gluconate container to cross-link alginate. Suspensions of chondrocytes/alginate and porous microspheres turned into a gel because of the release of calcium gluconate; thus, the injectable composite hydrogels give a 3D scaffold to fit the defects perfectly and integrate the extracellular-matrix-mimicking architecture to efficiently accommodate cartilage cells in situ. Tissue repair in a full-thickness cartilage defect model was controlled at 6, 12, and 18 weeks after the implant by micro-CT and immunohistochemistry to evaluate the healing status. The defect in the MPs/Alg+ cells group achieved an almost complete repair at 18 weeks, and the repaired chondrocytes regained a normal tissue structure. Moreover, the MPs/Alg+ cells-treated group increased the quality of tissue formed, including the accumulated glycosaminoglycan and the uniformly deposited type II collagen. The results point out the promising application of the injectable MPs/Alg-chondrocytes system for cartilage tissue engineering.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6044773 | PMC |
http://dx.doi.org/10.1021/acsomega.6b00495 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!