Suitable Fundamental Properties of TaVON Material for Visible-Light-Driven Photocatalysis: A DFT Study.

ACS Omega

Division of Physical Sciences and Engineering, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), 4700 KAUST, Thuwal 23955-6900, Kingdom of Saudi Arabia.

Published: November 2016

By applying calculations based on density functional theory, and on density functional perturbation theory, together with generalized gradient approximation-Perdew-Burke-Emzerho and screened Coulomb hybrid HSE06 functionals, we predict novel and suitable fundamental parameters of the stable monoclinic TaVON semiconductor for solar water splitting. In addition to its predicted bandgap of 2.0 eV in the required zone for solar-driven water splitting, this material reveals a high visible-light absorption coefficient, high static dielectric constant, high hole and electron mobilities along the [001] and [010] crystallographic directions, relatively low exciton binding energy, and suitable band edge energy levels for oxidizing water and reducing protons. The optical, charge-carrier transport, and redox features predicted for this material are found to be considerably better than those obtained for TaN, which is the most common semiconductor photocatalyst used in visible-light-driven water splitting.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6044673PMC
http://dx.doi.org/10.1021/acsomega.6b00250DOI Listing

Publication Analysis

Top Keywords

water splitting
12
suitable fundamental
8
density functional
8
fundamental properties
4
properties tavon
4
tavon material
4
material visible-light-driven
4
visible-light-driven photocatalysis
4
photocatalysis dft
4
dft study
4

Similar Publications

Design and synthesis of autogenous growth NiFe bimetallic phosphide catalysts on a nickel iron foam-like substrate for efficient overall water splitting.

J Colloid Interface Sci

January 2025

Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China. Electronic address:

The design of low-cost, highly active, and stable electrocatalysts is pivotal for advancing water electrolysis technologies. In this study, carbonyl iron powder (CIP) was anchored within the pores of nickel foam (NF) by electroplating nickel, creating nickel iron foam-like (NFF-L) substrates. Subsequently, nickel-iron hydroxide (NiFe-OH) was synthesized on the NFF-L substrate employing an autogenous growth strategy, followed by a phosphating treatment that produced a nanoflower-like NiFe bimetallic phosphide heterostructure catalyst (FeP-NiP@NFF-L).

View Article and Find Full Text PDF

Transition-metal dichalcogenides (TMDs), such as molybdenum disulfide (MoS), have emerged as a generation of nonprecious catalysts for the hydrogen evolution reaction (HER), largely due to their theoretical hydrogen adsorption energy close to that of platinum. However, efforts to activate the basal planes of TMDs have primarily centered around strategies such as introducing numerous atomic vacancies, creating vacancy-heteroatom complexes, or applying significant strain, especially for acidic media. These approaches, while potentially effective, present substantial challenges in practical large-scale deployment.

View Article and Find Full Text PDF

Background And Objectives: Regular physical activity (PA) and Mediterranean diet (MeDi) adherence independently improve glycemic control and clinical outcomes in type 2 diabetes mellitus (T2DM). This study examined the associations between PA, body composition (BC), MeDi adherence, and glycemic control in Dalmatian T2DM patients.

Materials And Methods: A cross-sectional study was conducted at the University Hospital of Split (November-December 2023) during an open call for T2DM patients.

View Article and Find Full Text PDF

Asphalt pavement, widely utilized in transportation infrastructure due to its favourable properties, faces significant degradation from chloride salt erosion in coastal areas and winter deicing regions. In this study, two commonly used asphalt binders, 70# base asphalt and SBS (Styrene-Butadiene-Styrene)-modified asphalt, were utilized to study the chloride salt erosion effect on asphalt pavement by immersing materials in laboratory-prepared chloride salt solutions. The conventional properties and adhesion of asphalt were assessed using penetration, softening point, ductility, and pull-off tests, while Fourier transform infrared spectroscopy (FTIR) elucidated the erosion mechanism.

View Article and Find Full Text PDF

The collapse of surface goaf beneath highways can result in instability and damage to roadbeds. However, filling the goaf areas with foam concrete can significantly enhance the stability of the roadbeds while considerably reducing the costs of filling materials. This study analyzes the effects on destructive characteristics, mechanical properties, stress-strain curve features, and relevant metrics, while also observing the microstructure of basalt fiber-calcined gangue-silty clay foam concrete (BF-CCG-SCFC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!