A lot of plants are available which can produce nanoparticles used in medicine, life sciences, and the pharmaceutical industry. The present study aims to introduce safe biological and eco-friendly methods for synthesizing silver nanoparticles (AgNPs) by using Saturaja rechengri Jamzad extract, which can replace traditional chemical methods. In addition, the chemical nature and antimicrobial activities were identified and accordingly the anticancer effects of AgNPs was successfully reported on colon cancer cells (HT-29). Light and ultrasound, as two green chemistry techniques were first used for AgNPs synthesis. Then, morphological and crystalline structure of AgNPs was evaluated by scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis, respectively. In addition, functional groups were determined by using the Fourier transform infrared spectroscopy (FTIR) spectrum. Further, a maximum adsorption of AgNPs was observed in UV-visible spectrum. In the next stage, antibacterial activity of green synthesized AgNPs was evaluated against two pathogenic bacteria including Escherichia coli and Staphylococcus aureus. Finally, the cytotoxicity of AgNPs on HT-29 at different concentrations and times of AgNPs was determined by MTT assay. The findings indicated that the synthesis of AgNPs by ultrasonic technique leads to smaller particle size and more distribution. Based on the results of MTT test for calculating the IC50%, the anti-proliferative effects of the light and ultrasound AgNPs were observed on HT-29 cell lines depending on the dose and time. Finally, the AgNPs had the most cytotoxicity HT-29 cell lines at 100 μg/ml concentration although the lowest toxicity effect was reported on HEK-293 cell lines at the same conditions. The change in the concentration, physical and chemical properties of AgNPs including the form and size of particles, and their type of covering and fields can influence the induction of cytotoxicity and morphological change in the treated cells. The present research opens a new horizon on the development of new biological and cytotoxicity agents.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6046422PMC
http://dx.doi.org/10.15171/apb.2018.028DOI Listing

Publication Analysis

Top Keywords

agnps
12
cell lines
12
silver nanoparticles
8
rechengri jamzad
8
jamzad extract
8
light ultrasound
8
agnps evaluated
8
agnps observed
8
ht-29 cell
8
phytochemical synthesis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!