Agricultural waste obtained from mid ribs can provide a veritable source of materials which can be used as precursor materials for the production of pharmaceutical grade activated charcoal. The pore size and surface morphology of activated charcoal defines the types of molecules that could be adsorbed unto it, as surface morphology plays a significant role in determining the surface availability and areas of adsorption. The activated charcoal samples prepared from via either physical or chemical activation was characterized via surface area using the BET method and subsequently pore structure and size analyzed by scanning electron microscopy (SEM). Physically activated fronds activated with nitrogen gas had wide spread microporosity with micropore volume of 0.232 cc/g compared to the chemically activated with 1M and 3M phosphoric acid respectively. The commercial activated charcoal/metronidazole combination in the in vitro-pharmacodynamic model reflected no re-growth after 4 hours, however for charcoal formulated from via chemical activation with 3M phosphoric acid and metronidazole no regrowth was seen at the second hour and this was maintained throughout the duration of the experiment. Increased macroporosity enhanced bacterial adsorption and this was further facilitated by the presence of antibacterial metronidazole in the in vitro pharmacodynamic model. Activated charcoal produced from agricultural waste obtained from dried mid ribs consisting of increased macroporosity with mixed meso/micro porosity and antibacterial metronidazole form the best model for bacterial adsorption and will be useful in the treatment of diarrhea caused by O157:H7.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6014264 | PMC |
http://dx.doi.org/10.1016/j.jmau.2016.05.001 | DOI Listing |
Molecules
December 2024
Key Laboratory of Poyang Lake Basin Agricultural Resource and Ecology of Jiangxi Province, College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang 330045, China.
Porous activated carbons (AC-AN and AC-AO) for toluene adsorption were prepared starting from brewer's grain biomass pretreated with microorganisms ( van Tieghem for AC-AN and RIB40 for AC-AO). The structures and chemical properties of the three activated carbon materials (AC-AN, AC-AO, and AC that was not pretreated with microorganisms) were characterized by N adsorption-desorption isotherms, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The adsorption behavior of the three activated carbons for toluene was studied and correlated with the physical and chemical properties of these materials.
View Article and Find Full Text PDFMolecules
December 2024
Postgraduate Program in Amazonian Natural Resources Engineering, Federal University of Pará, Rua Augusto Correa, 01, Belém 66075-110, Brazil.
The widespread use of antibiotics such as fluoroquinolones (FQs) has raised environmental and health concerns. This study is innovative as we investigate the removal of ciprofloxacin (CIP) and norfloxacin (NOR) from water using activated carbon derived from cupuaçu bark (CAC). This previously discarded biomass is now a low-cost raw material for the production of activated carbon, boosting the local economy.
View Article and Find Full Text PDFMolecules
December 2024
State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China.
In this research, we produced two types of biochar (BC) using cotton stalks as raw material and KOH as an activator, and compared their performance and adsorption mechanisms in the removal of tetracycline (TC) and methylene blue (MB) from wastewater. The results showed that the biochar generated using both procedures formed pores that connected to the interior of the biochar and had extensive microporous and mesoporous structures. The molten salt approach produces biochar with a higher specific surface area, larger pore size, and higher pore volume than the impregnation method, with a maximum specific surface area of 3095 m/g.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Department of Dentistry, Federal University of Maranhão (UFMA), São Luís 65080-805, MA, Brazil.
This in vitro study evaluated the effects of brushing with activated charcoal powder or toothpaste on enamel surface properties, including color change (ΔE), Knoop microhardness (HK), roughness (Ra), and the characteristics of the resulting brushing slurry [pH, fluoride (F), and calcium (Ca) concentration]. A total of 48 enamel samples were stained and divided into 4 groups ( = 12): activated charcoal toothpaste (AC-T), activated charcoal powder (AC-P), hydrogen peroxide-based whitening toothpaste (HP-T), and conventional toothpaste (C-T, positive control). The samples were subjected to a brushing cycling model, and ΔE, HK, Ra and enamel morphology were analyzed at baseline (T0) and after brushing cycle (T1).
View Article and Find Full Text PDFInt J Mol Sci
December 2024
School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China.
In the electrocatalytic (EC) degradation process, challenges such as inefficient mass transfer, suboptimal mineralization rates, and limited current efficiency have restricted its broader application. To overcome these obstacles, this study synthesized spherical particle electrodes (FeNi@BC) with superior electrocatalytic performance using a bio-inspired preparation method. A three-dimensional electrocatalytic oxidation system based on FeNi@BC electrode, EC/FeNi@BC, showed excellent degradation efficiency of sulfamethoxazole (SMX), reaching 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!