Background: Gender differences may contribute to variances in the potential protective effects of tea against cognitive impairment in the elderly.

Objective: To examine the association between different types of tea consumption and the risk of amnestic mild cognitive impairment (aMCI) along gender lines.

Methods: A cross-sectional study was conducted with reference to 20 communities in China. The sample population included elderly participants aged 60 years or older. A standardized questionnaire was used to collect each participant's general demographic information. Trained psychologists administrated the Mini-Mental State Examination (MMSE) and the Montreal Cognitive Assessment (MoCA) to assess participants' cognitive function. An attending psychiatrist evaluated each participant's cognitive function. Finally, data from 2,131 participants were analyzed to assess the association.

Results: With regard to male participants, the percentage of green tea consumption was higher in the normal control group than in the aMCI group (=4.64, =0.031). Logistic regression analysis showed that green tea consumption reduced the risk of aMCI in male participants (OR=0.657, =0.019), and this finding was highly significant in males aged under 70 years (OR=0.376, =0.002). Regarding female participants across every age group, the results indicated that tea consumption failed to significantly decrease the risk of aMCI (>0.05). Unlike green tea, black tea and oolong tea were not correlated with a reduced risk of aMCI in terms of gender or age group. Multiple linear regression analysis also revealed that age, years of education, and green tea consumption (=0.996, =0.000) were associated with MoCA and MMSE scores, though only in male participants.

Conclusion: Green tea consumption showed a protective effect against aMCI in males but not in females, particularly in males aged <70 years. However, black tea and oolong tea failed to show any protective effect in either males or females.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6044798PMC
http://dx.doi.org/10.2147/NDT.S165618DOI Listing

Publication Analysis

Top Keywords

green tea
24
tea consumption
24
cognitive impairment
12
risk amci
12
tea
11
gender differences
8
protective effects
8
amnestic mild
8
mild cognitive
8
aged years
8

Similar Publications

This study delves into the synergistic effect of Dielectric Barrier Discharge (DBD) plasma and cellulase enzymatic treatment on enhancing the hydrophilicity of sustainable cellulosic biopolymer named Banana (B). The investigation encompasses two approaches: plasma treatment preceded by enzyme (PE) treatment and enzyme treatment preceded by plasma (EP) treatment, both aimed at augmenting to improve the hydrophilicity of biopolymer, which ultimately increases its antimicrobial finish. The study explores the physiochemical transformation that occurred during the treatments including wicking test, contact angle, weight loss, SEM, ATR-FTIR and XRD analyses.

View Article and Find Full Text PDF

Genome-wide identification and characterization of CsHSP60 gene family associated with heat and drought responses in tea plants (Camellia sinensis).

Plant Physiol Biochem

March 2025

Anxi College of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Tea Green Cultivation and Processing Collaborative Innovation Center, Anxi County, Quanzhou, 362400, China; Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. Electronic address:

Heat and drought are the stressors with significant adverse impacts on the yield stability of tea plants. The heat shock proteins 60 (HSP60s) play important roles in protecting plants under heat stress. However, the mechanism of HSP60s under heat and drought stresses remains unclear.

View Article and Find Full Text PDF

A new method was established to extract flavonoids from tea plant seed husk: ultrasonic-cold isostatic pressure synergistic extraction. The effects of pressure, ethanol concentration, tea plant seed husk addition and treatment time on the extraction of flavonoids were investigated. The optimal extraction process was determined as follows: applied pressure 468.

View Article and Find Full Text PDF

The chemical basis of aroma/taste and color formation in green tea infusion during cold brewing revealed by metabolomics analysis.

Food Chem

March 2025

State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Anhui Provincial Key Laboratory of Food Safety Monitoring and Quality Control, New-style Industrial Tea Beverage Green Manufacturing Joint Laboratory of Anhui Province, Hefei, 230036, China; Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, 230036, Anhui, PR China. Electronic address:

In this study, metabolomics and chemometrics were utilized to comprehensively investigate chemical mechanisms of aroma, taste, and color formation in cold-brewed green tea (4 °C). The results showed that the typical flavor of cold-brewed green tea (tea-to-water ratio: 1:50 g/mL) developed gradually after 1 h. Compared with the hot-brewed (80 °C) condition, volatile alcohols accumulated more under cold-brewing conditions.

View Article and Find Full Text PDF

A covalent organic framework TPB-DMTP was physically coated onto the gully-like surface of stainless-steel fiber. The fabricated TPB-DMTP-coated stainless-steel fiber was used to extract five phthalic acid esters (PAEs) prior to the GC-FID separation and determination in bottled tea beverages. The developed SPME-GC-FID method gave limits of detection (S/N = 3) from 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!