Because of the concerns associated with radiation exposure at a young age, there is an increased interest in pediatric absorbed dose estimates for imaging agents. Almost all reported pediatric absorbed dose estimates, however, have been determined using adult pharmacokinetic data with radionuclide S values that take into account the anatomical differences between adults and children based upon the older Cristy-Eckerman (C-E) stylized phantoms. In this work, we use pediatric model-derived pharmacokinetics to compare absorbed dose and effective dose estimates for F-FDG in pediatric patients using S values generated from two different geometries of computational phantoms. Time-integrated activity coefficients of F-FDG in brain, lungs, heart wall, kidneys and liver, retrospectively, calculated from 35 pediatric patients at the Boston's Children Hospital were used. The absorbed dose calculation was performed in accordance with the Medical Internal Radiation Dose method using S values generated from the University of Florida/National Cancer Institute (UF/NCI) hybrid phantoms, as well as those from C-E stylized computational phantoms. The effective dose was computed using tissue-weighting factors from ICRP Publication 60 and ICRP Publication 103 for the C-E and UF/NCI, respectively. Substantial differences in the absorbed dose estimates between UF/NCI hybrid pediatric phantoms and the C-E stylized phantoms were found for the lungs, ovaries, red bone marrow and urinary bladder wall. Large discrepancies in the calculated dose values were observed in the bone marrow; ranging between -26% to +199%. The effective doses computed by the UF/NCI hybrid phantom S values were slightly different than those seen using the C-E stylized phantoms with percent differences of -0.7%, 2.9% and 2.5% for a newborn, 1 year old and 5 year old, respectively. Differences in anatomical modeling features among computational phantoms used to perform Monte Carlo-based photon and electron transport simulations for F, and very likely for other radionuclides, impact internal organ dosimetry computations for pediatric nuclear medicine studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6398606 | PMC |
http://dx.doi.org/10.1088/1361-6560/aad47a | DOI Listing |
J Radiol Prot
January 2025
Department of Mechanical Engineering, University of Houston, Houston, 77204, UNITED STATES.
Although the Boundary Representation (BREP) method creates detailed surface phantoms of Chinese women of childbearing age, these phantoms cannot be directly used in Monte Carlo simulations. They must first be converted into voxel phantoms, a process that may diminish some of the inherent advantages of the surface phantoms. Therefore, the aim of this study is to construct a tetrahedral mesh (TM) phantom of Chinese women of childbearing age based on the BREP phantom, incorporating micron-level structural refinements to certain organ tissues while maintaining the original model's structure.
View Article and Find Full Text PDFJ Arrhythm
February 2025
Department of Cardiovascular Medicine, Graduate School of Biomedical and Health Sciences Hiroshima University Hiroshima Japan.
Background: Successful isolation of the superior vena cava (SVC) using a functional conduction block between the right atrium (RA) and SVC has been documented. However, a comparison of this approach with the conventional method (CM) of circumferential ablation of the RA-SVC junction, based on angiography, remains unexplored.
Objective: In this study, we employed the innovative omnipolar mapping technology (OT) to discern the RA-SVC connection and compared clinical outcomes with those from CM.
Life Sci Space Res (Amst)
February 2025
Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.
Future long duration space missions will expose astronauts to higher doses of galactic cosmic radiation (GCR) than those experienced on the international space station. Recent studies have demonstrated astronauts may be at risk for cardiovascular complications due to increased radiation exposure and fluid shift from microgravity. However, there is a lack of direct evidence on how the cardiovascular system is affected by GCR and microgravity since no astronauts have been exposed to exploratory mission relevant GCR doses.
View Article and Find Full Text PDFLife Sci Space Res (Amst)
February 2025
Gulhane School of Medicine, Department of Obstetrics and Gynecology, Ankara, Turkey.
Space missions have revealed certain disincentive factors of this unique environment, such as microgravity, cosmic radiation, etc., as the aerospace industry has made substantial progress in exploring deep space and its impacts on human body. Galactic cosmic radiation (GCR), a form of ionizing radiation, is one of those environmental factors that has potential health implications and, as a result, may limit the duration - and possibly the occurrence - of deep-space missions.
View Article and Find Full Text PDFLife Sci Space Res (Amst)
February 2025
National Research Council of Italy, Rome, Italy. Electronic address:
The paper presents the variations of space radiation (primary and secondary galactic cosmic rays (GCR) absorbed dose rate in silicon and flux) measured during the first-ever commercial suborbital flight of the Virgin Galactic (VG) SpaceShipTwo Unity on 29 June 2023. A Portable Dosimeter-Spectrometer Liulin-CNR-VG is used. It is developed in the Space Research and Technology Institute, Bulgarian Academy of Sciences (SRTI-BAS) under a scientific contract with National Research Council of Italy (CNR), Italy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!