Exponentially growing cells of Erwinia chrysanthemi EC16 usually export about 98% of their pectate lyase (PL) and protease, about 40% of their polygalacturonase (PG), and about 60% of their cellulase (endoglucanase or carboxymethyl cellulase; CL). By using the R plasmid, pJB4JI (pPH1JI::Mu::Tn5), three independent Tn5 insertion mutants were obtained that exported normal levels of protease but 10% or less of PL, PG, and CL. Physical analysis revealed that single copies of Tn5 had inserted into the E. chrysanthemi chromosome, producing a similar export-defective (Out-) phenotype. The synthesis of PL, PG, and CL was not affected by the Tn5 insertions. These enzymes were released from the mutants on spheroplast formation, indicating that they were located in the periplasmic space. Tn5 insertions caused the loss of a 35-kilodalton periplasmic protein, but did not alter the outer membrane protein composition. The findings are discussed with respect to the current knowledge on protein export in gram-negative bacteria.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC296101 | PMC |
http://dx.doi.org/10.1128/aem.50.4.894-898.1985 | DOI Listing |
Antimicrob Agents Chemother
February 2025
Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark.
acquires fosfomycin resistance through chromosomal mutations that reduce drug uptake and by drug-inactivating enzymes. However, the complete resistance mechanisms remain to be elucidated. The aim of this study was to elucidate the genetic mechanisms regulating fosfomycin susceptibility in uropathogenic (UPEC).
View Article and Find Full Text PDFVet Microbiol
March 2025
Jiangsu Co-Innovation Center for Prevention of Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University (JIRLAAPS), Yangzhou 225009, China. Electronic address:
Infectious coryza (IC) is a respiratory disease in poultry caused by Avibacterium paragallinarum (Av. paragallinarum). The disease caused growth retardation in broilers and reduced egg production in laying hens, resulting in significant economic losses to the global chicken industry.
View Article and Find Full Text PDFMicrob Pathog
March 2025
Department of Animal Science and Technology, Konkuk University, Seoul, 05029, Republic of Korea. Electronic address:
Burkholderia contaminans SK875, a member of Burkholderia cepacia complex (Bcc), are known to cause lung infections in cystic fibrosis patients. To gain deeper insights into its quorum sensing (QS)-mediated pathogenicity, we employed a transposon (Tn) insertion-based random mutagenesis approach. A Tn mutant library comprising of 15,000 transconjugants was generated through conjugation between wild-type (WT) recipient B.
View Article and Find Full Text PDFMetab Eng
March 2025
The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark. Electronic address:
Advanced genome engineering enables precise and customizable modifications of bacterial species, and toolsets that exhibit broad-host compatibility are particularly valued owing to their portability. Tn5 transposon vectors have been widely used to establish random integrations of desired DNA sequences into bacterial genomes. However, the iteration of the procedure remains challenging because of the limited availability and reusability of selection markers.
View Article and Find Full Text PDFSci Rep
November 2024
Department of Food Hygiene and Consumer Health Protection, Wrocław University of Environmental and Life Sciences, Wrocław, Poland.
Campylobacter jejuni is a major cause of food- and water-borne bacterial infections in humans. A key factor helping bacteria to survive adverse environmental conditions is biofilm formation ability. Nonetheless, the molecular basis underlying biofilm formation by C.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.