Rational Design of MOF/COF Hybrid Materials for Photocatalytic H Evolution in the Presence of Sacrificial Electron Donors.

Angew Chem Int Ed Engl

Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, No. 1, Wenyuan Road, Nanjing, 210023, China.

Published: September 2018

Crystalline and porous covalent organic frameworks (COFs) and metal-organic frameworks (MOFs) materials have attracted enormous attention in the field of photocatalytic H evolution due to their long-range order structures, large surface areas, outstanding visible light absorbance, and tunable band gaps. In this work, we successfully integrated two-dimensional (2D) COF with stable MOF. By covalently anchoring NH -UiO-66 onto the surface of TpPa-1-COF, a new type of MOF/COF hybrid materials with high surface area, porous framework, and high crystallinity was synthesized. The resulting hierarchical porous hybrid materials show efficient photocatalytic H evolution under visible light irradiation. Especially, NH -UiO-66/TpPa-1-COF (4:6) exhibits the maximum photocatalytic H evolution rate of 23.41 mmol g  h (with the TOF of 402.36 h ), which is approximately 20 times higher than that of the parent TpPa-1-COF and the best performance photocatalyst for H evolution among various MOF- and COF-based photocatalysts.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.201806862DOI Listing

Publication Analysis

Top Keywords

photocatalytic evolution
16
hybrid materials
12
mof/cof hybrid
8
visible light
8
evolution
5
rational design
4
design mof/cof
4
materials
4
photocatalytic
4
materials photocatalytic
4

Similar Publications

In this study, graphitic carbon nitride (CN) and tungsten trioxide (WO) were successfully incorporated into bromine (Br)-doped graphitic carbon nitride (BCN) using an in-situ hydrothermal method. The photocatalytic efficiency of the resulting WO/Br-doped CN (WBCN) composites for the removal of tetracycline (TC) antibiotics under sunlight irradiation was evaluated. The mass ratio of WO to Br-doped CN (BCN) significantly influenced TC adsorption and photocatalytic degradation, with an optimal ratio of 9:1.

View Article and Find Full Text PDF

Semiconductor nanomaterials and nanostructured interfaces have important technological applications, ranging from fuel production to electrosynthesis. Their photocatalytic activity is known to be highly heterogeneous, both in an ensemble of nanomaterials and within a single entity. Photoelectrochemical imaging techniques are potentially useful for high-resolution mapping of photo(electro)catalytic active sites; however, the nanoscale spatial resolution required for such experiments has not yet been attained.

View Article and Find Full Text PDF

Electrocatalytic and Photocatalytic N Fixation Using Carbon Catalysts.

Nanomaterials (Basel)

January 2025

Institute of Materials Science & Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.

Carbon catalysts have shown promise as an alternative to the currently available energy-intensive approaches for nitrogen fixation (NF) to urea, NH, or related nitrogenous compounds. The primary challenges for NF are the natural inertia of nitrogenous molecules and the competitive hydrogen evolution reaction (HER). Recently, carbon-based materials have made significant progress due to their tunable electronic structure and ease of defect formation.

View Article and Find Full Text PDF

Graphitic Carbon Nitride for Photocatalytic Hydrogen Production from Water Splitting: Nano-Morphological Control and Electronic Band Tailoring.

Nanomaterials (Basel)

December 2024

State Key Laboratory of Solidifcation Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China.

Semiconductor polymeric graphitic carbon nitride (g-CN) photocatalysts have garnered significant and rapidly increasing interest in the realm of visible light-driven hydrogen evolution reactions. This interest stems from their straightforward synthesis, ease of functionalization, appealing electronic band structure, high physicochemical and thermal stability, and robust photocatalytic activity. This review starts with the basic principle of photocatalysis and the development history, synthetic strategy, and structural properties of g-CN materials, followed by the rational design and engineering of g-CN from the perspectives of nano-morphological control and electronic band tailoring.

View Article and Find Full Text PDF

The effective S-scheme homojunction relies on the precise regulation of band structure and construction of advantaged charge migration interfaces. Here, the electronic structural properties of g-C3N4 were modulated through meticulous polymerization of self-assembled supramolecular precursors. Experimental and DFT results indicate that both the intrinsic bandgap and surface electronic characteristics were adjusted, leading to the formation of an in-situ reconstructed homojunction interface facilitated by intrinsic van der Waals forces.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!