New fluorescent molecular probes, which can selectively target specific cell surface receptors, are needed for microscopy, in vivo imaging, and image guided surgery. The preparation of multivalent probes using standard synthetic chemistry can be a laborious process due to low reaction yields caused by steric effects. In this study, fluorescent molecular probes were prepared by a programmed non-covalent pre-assembly process that used a near-infrared fluorescent squaraine dye to thread a macrocycle bearing a cyclic arginine-glycine-aspartate peptide antagonist (cRGDfK) as a cancer targeting unit. Cell microscopy studies using OVCAR-4 (ovarian cancer) and A549 (lung cancer) cells that express high levels of the integrin αvβ3 or αvβ5 receptors, respectively, revealed a multivalent cell targeting effect. That is, there was comparatively more cell uptake of a pre-assembled probe equipped with two copies of the cRGDfK antagonist than a pre-assembled probe with only one appended cRGDfK antagonist. The remarkably high photostability and low phototoxicity of these near-infrared probes allowed for acquisition of long-term fluorescence movies showing endosome trafficking in living cells. In vivo near-infrared fluorescence imaging experiments compared the biodistribution of a targeted and untargeted probe in a xenograft mouse tumor model. The average tumor-to-muscle ratio for the pre-assembled targeted probe was 3.6 which matches the tumor targeting performance reported for analogous cRGDfK-based probes that were prepared entirely by covalent synthesis. The capability to excite these pre-assembled near-infrared fluorescent probes with blue or deep-red excitation light makes it possible to determine if a target site is located superficially or buried in tissue, a probe performance feature that is likely to be very helpful for eventual applications such as fluorescence guided surgery.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6415912PMC
http://dx.doi.org/10.1002/chem.201801825DOI Listing

Publication Analysis

Top Keywords

near-infrared fluorescent
12
fluorescent molecular
12
molecular probes
12
guided surgery
8
probes prepared
8
pre-assembled probe
8
crgdfk antagonist
8
probes
7
near-infrared
5
fluorescent
5

Similar Publications

The therapeutic diagnosis of liver diseases has garnered significant interest within the medical community. In recent years, mesoporous silica nanoparticles (MSNs) have emerged as crucial nanocarriers for the treatment of liver ailments. Their remarkable diagnostic capabilities enable them to be used in techniques such as high-throughput mass spectrometry (MS), magnetic resonance imaging (MRI), near-infrared (NIR) fluorescence imaging, photoacoustic imaging (PAI), and ultrasonography (US), attracting considerable attention.

View Article and Find Full Text PDF

Intraoperative fluorescence navigation can illuminate the tumor, directing surgeons to accurately achieve negative margins, which not only reduces recurrence but also minimizes the incidence of complications. Herein, we developed two near-infrared fluorescent probes (Em = 820 nm) and (Em = 823 nm) with prolonged tumor retention (>72 h) and high target-to-background ratios (up to 4.5) based on the conjugation of pan-cancer targeted fibroblast activation protein inhibitor (FAPI) and the "tumor-seeking" Cyanine 7 bearing a meso-chloride and a cyclohexenyl skeleton (Cy7-Cl).

View Article and Find Full Text PDF

A ratiometric fluorescent probe with dual near infrared emission for in vivo ratio imaging of cysteine.

Talanta

January 2025

State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China. Electronic address:

Accurately detecting cysteine (Cys) in vivo is crucial for diagnosing Cys-related diseases. A novel ratiometric fluorescent probe featuring dual near-infrared emission is developed in this study for the in vivo ratio imaging of Cys. The probe comprises a hemicyanine organic small-molecule dye (HCy-CYS) with specific Cys recognition capabilities covalently coupled with carbon dots (CDs) synthesized using glutathione (GSH) as the carbon source (GCDs), forming a unique composite nanofluorescent probe (GCDs@CYS).

View Article and Find Full Text PDF

Objective: The parathyroid gland emits autofluorescence with a peak at 822 nm when excited using near-infrared light at 785 nm; this observation of autofluorescence using a near-infrared detection device is useful for identifying the parathyroid gland during surgery. We aimed to clarify the localization of autofluorescent substances in parathyroid and thyroid tissues by observing them under a fluorescence microscope through filters that selectively pass specific near-infrared wavelengths.

Methods: Four cases of parathyroid and three cases of thyroid were examined under a fluorescence microscope.

View Article and Find Full Text PDF

Multifunctional porphyrinic metal-organic framework-based nanoplatform regulating reactive oxygen species achieves efficient imaging-guided cascaded nanocatalytic therapy.

J Colloid Interface Sci

January 2025

Department of Chemistry, Kay Lab of Bioorganic Phosphorus Chemistry and Chemical Biology of Ministry of Education, Beijing Key Laboratory for Analytical Methods and Instrumentation, Tsinghua University, 100084 Beijing, China. Electronic address:

The integration of reactive oxygen species (ROS) related photodynamic therapy (PDT) with the strategy of reshaping the tumor microenvironment (TME) has emerged as a potential approach for nanodiagnostic and therapeutic interventions. However, the therapeutic efficacy based on ROS treatments may be hindered by intracellular antioxidants such as glutathione (GSH) and tumor hypoxia. To address these challenges, a nanoplatform based on GSH-responsive multifunctional porphyrinic metal-organic framework (PCN-224@Au@MnO@HA, PAMH) was proposed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!