High-glucose-induced changes in macrophage secretome: regulation of immune response.

Mol Cell Biochem

Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.

Published: February 2019

Secretory products from infiltrating macrophages have been thought to play crucial roles in development and progression of diabetic complications in various tissues/organs. Nevertheless, diabetes-induced changes in macrophage secretory products remained largely unknown. We thus analyzed high-glucose (HG)-induced changes in secretome of human macrophages derived from U937 human monocytic cell line after phorbol 12-myristate 13-acetate (PMA) activation. Serum-free culture supernatants were collected from macrophages exposed to 5.5 mM glucose (NG-M-sup) (normal control), 25 mM glucose (HG-M-sup), or 5.5 mM glucose + 19.5 mM mannitol (MN-M-sup) (osmotic control) for 16 h. After dialysis and lyophilization, secreted proteins were subjected to 2-DE analysis (n = 5 gels derived from 5 independent cultures per group). Quantitative analysis and statistics revealed 23 protein spots whose secretory levels significantly differed among the three conditions. These proteins were successfully identified by nanoLC-ESI-MS/MS analyses and changes in levels of heat shock protein 90 (HSP90), HSP70, HSP60, and β-actin were confirmed by Western blotting. Global protein network and functional enrichment analyses revealed that the altered proteins in HG-M-sup were involved mainly in regulation of immune response that might communicate with other bystander cells through the release of extracellular vesicles. These data may lead to a wider view of pathogenic mechanisms of diabetic complications.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11010-018-3411-zDOI Listing

Publication Analysis

Top Keywords

changes macrophage
8
regulation immune
8
immune response
8
secretory products
8
diabetic complications
8
high-glucose-induced changes
4
macrophage secretome
4
secretome regulation
4
response secretory
4
products infiltrating
4

Similar Publications

A murine model of induced myocarditis and cardiac dysfunction.

Microbiol Spectr

January 2025

Department of Molecular and Comparative Pathobiology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA.

Unlabelled: is a protozoan parasite that causes human and animal African trypanosomiases (HAT and AAT). Cardiac symptoms are commonly reported in HAT patients, and intracardiac parasites with accompanying myocarditis have been observed in both natural hosts and animal models of infection. Despite the importance of as a cause of cardiac dysfunction and the dramatic socioeconomic impact of African trypanosomiases in sub-Saharan Africa, there are currently no reproducible murine models of associated cardiomyopathy.

View Article and Find Full Text PDF

Cisplatin, a chemotherapeutic drug, is known for causing gastrointestinal disorders and neuropathic pain, but its impact on visceral sensitivity is unclear. Monosodium glutamate (MSG) has been shown to improve gastrointestinal dysmotility and neuropathic pain induced by cisplatin in rats. This study aimed to determine if repeated cisplatin treatment alters visceral sensitivity and whether dietary MSG can prevent these changes.

View Article and Find Full Text PDF

Background: Parkinson's disease (PD) is one of the most common neurodegenerative disorders. Previous research has confirmed that isofraxidin can reduce macrophage expression and inhibit peripheral inflammation. However, its effects on the central nervous system remain underexplored.

View Article and Find Full Text PDF

We have employed a triazine-based conjugated polymer network (CPN) for the selective detection of hypochlorite in a semi-aqueous environment. CPNs have been widely employed in gas capture, separation, and adsorption, but the fluorescent properties of CPNs possessing extensive π-conjugated systems tend to be unexplored. Herein, we report the photophysical properties of the CPN and investigate its sensing capability towards hypochlorite.

View Article and Find Full Text PDF

Dry eye disease (DED) is an inflammatory disorder in which CD4 T cells play a significant role in its pathogenesis. A CD4 T cell subset termed granulocyte-macrophage colony-stimulating factor-producing T helper (ThGM) cells would contribute to DED pathogenesis. However, the mechanisms by which the activity of ThGM cells is modulated are not thoroughly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!