A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Spatial Distribution of Microcracks in Osteoarthritic Femoral Neck: Influence of Osteophytes on Microcrack Formation. | LitMetric

AI Article Synopsis

  • The study compares microcrack density in osteophytes versus other regions of the osteoarthritic femoral neck in 24 postmenopausal women, revealing microcracks are present in all femoral necks but only in 23% of osteophytes.
  • Microcrack density was higher in cancellous bone compared to cortical bone, while microcrack length was greater in cortical bone, indicating different mechanical properties in these bone types.
  • The presence of osteophytes appears to influence microcrack formation and distribution, suggesting that their presence might alter local bone quality in osteoarthritic conditions.

Article Abstract

Osteophytes have been suggested to influence the bone mechanical properties. The aim of this study was to compare the microcrack density in osteophytes with that in the other parts of the osteoarthritic femoral neck (FN). The presence of microcracks was investigated in the ultra-distal FN and in the osteophytes in samples obtained during hip arthroplasty in 24 postmenopausal women aged 67 ± 10 years. Furthermore, the 3D microarchitecture and the collagen crosslinks contents were assessed by high-resolution peripheral quantitative computed tomography and high-performance liquid chromatography, respectively. Osteophytes were present in the 24 FN, mainly at the level of the inferior quadrant. Microcracks were present in all FN with an average of 2.8 per sample. All observed microcracks were linear. The microcrack density (Cr.N/BV; #/mm) was significantly higher in cancellous than in cortical bone (p = 0.004), whereas the microcrack length (Cr.Le, µm) was significantly greater in cortical bone (p = 0.04). The collagen crosslinks ratio pyridinoline/deoxypyridinoline was significantly and negatively correlated with Cr.N/BV in the posterior (r' = - 0.68, p = 0.01) and inferior (r' = - 0.53, p = 0.05) quadrants. Microcracks were observed in seven osteophytes in seven patients. When microcracks were present in the osteophyte area, Cr.N/BV was also significantly higher in the whole FN and in the quadrant of the osteophyte compared to the cases without microcrack in the osteophyte (p < 0.03). In conclusion, in FN from hip osteoarthritis microcracks are present in all FNs but in only 23% of the osteophytes. The microcrack formation was greater and their progression was smaller in the cancellous bone than in the cortex. The spatial distribution of microcracks varied according to the proximity of the osteophyte, and suggests that osteophyte may influence microcrack formation related to changes in local bone quality.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00223-018-0456-7DOI Listing

Publication Analysis

Top Keywords

osteoarthritic femoral
8
femoral neck
8
microcrack density
8
collagen crosslinks
8
cortical bone
8
microcracks
6
osteophytes
6
microcrack
5
spatial distribution
4
distribution microcracks
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!