Discrete evolution of the crystal structure during the growth of Ba-hexaferrite nanoplatelets.

Nanoscale

Department for Materials Synthesis, JoŽef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia.

Published: August 2018

An understanding of the adaptation of the crystal structure of materials confined at the nanoscale, the influences of their specific structures on the evolution of their morphologies and, finally, their functional properties is essential not only for expanding fundamental knowledge, but also for facilitating the designs of novel nanostructures for diverse technological and medical applications. Here we describe how the distinct structure of barium-hexaferrite nanoplatelets evolves in a stepwise manner in parallel with the development of their size and morphology during hydrothermal synthesis. The nanoplatelets are formed by reactions between Ba- and Fe-hydroxides in an aqueous suspension at temperatures below 80 °C. Scanning-transmission electron microscopy showed that the structure of the as-synthesized, discoid nanoplatelets (∼2.3 nm thick, ∼10 nm wide) terminates at the basal surfaces with Ba-containing planes. However, after subsequent washing of the nanoplatelets with water the top two atomic layers dissolve from the surfaces. The final structure can be represented by a SRS* sequence of the barium-hexaferrite SRS*R* unit cell, where S and R represent a hexagonal (BaFe6O11)2- and a cubic (Fe6O8)2+ structural block, respectively. Due to the stable SRS* structure, the thickness of the primary nanoplatelets remains unchanged up to approximately 150 °C, when some of the primary nanoplatelets start to grow exaggeratedly and their thicknesses increase discretely with the addition of the RS segments to their structure. The SRS* structure of the primary nanoplatelets is too thin for the complete development of magnetic ordering. However, the addition of just one RS segment (SRS*R*S structure) gives the nanoplatelets hard magnetic properties.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8nr03815eDOI Listing

Publication Analysis

Top Keywords

primary nanoplatelets
12
structure
9
nanoplatelets
9
crystal structure
8
srs* structure
8
discrete evolution
4
evolution crystal
4
structure growth
4
growth ba-hexaferrite
4
ba-hexaferrite nanoplatelets
4

Similar Publications

One of the key technical challenges before the widespread adoption of proton exchange membrane fuel cells (PEMFCs) is increasing the durability of the platinum catalyst layer to meet a target of 8000 operating hours with only a 10% loss of performance. Carbon corrosion, one of the primary mechanisms of degradation in fuel cells, has attracted attention from researchers interested in solving the durability problem. As such, the development of catalyst supports to avoid this issue has been a focus in recent years, with interest in hydrophobic supports such as highly graphitized carbons.

View Article and Find Full Text PDF

Gliomas are one of the most frequent primary brain tumors and pose a serious threat to people's lives and health. Platelets, a crucial component of blood, have been applied as drug delivery carriers for disease diagnosis and treatment. In this study, we designed engineered nanoplatelets for targeted delivery of therapeutic miR-375 and temozolomide (TMZ, a first-line glioma treatment agent) to enhance glioma therapy.

View Article and Find Full Text PDF

Achieving a narrow emission bandwidth is long pursued for display applications. Among all primary colors, obtaining pure red emission with high visual perception is the most challenging. In this work, CsPbI halide perovskite nanoplatelets (NPLs) with rigorously controlled 2D  [PbI] octahedron layer number (n) are demonstrated.

View Article and Find Full Text PDF

Earth-Abundant Kaolinite Nanoplatelet Gel Electrolytes for Solid-State Lithium Metal Batteries.

ACS Appl Mater Interfaces

July 2024

Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States.

Lithium-ion batteries are the leading energy storage technology for portable electronics and vehicle electrification. However, demands for enhanced energy density, safety, and scalability necessitate solid-state alternatives to traditional liquid electrolytes. Moreover, the rapidly increasing utilization of lithium-ion batteries further requires that next-generation electrolytes are derived from earth-abundant raw materials in order to minimize supply chain and environmental concerns.

View Article and Find Full Text PDF

O3-type layered oxide cathodes (NaTMO) for sodium-ion batteries (SIBs) have attracted significant attention as one of the most promising potential candidates for practical energy storage applications. The poor Na diffusion kinetics is, however, one of the major obstacles to advancing large-scale practical application. Herein, we report bismuth-doped O3-NaNiMnO (NMB) microspheres consisting of unique primary nanoplatelets with the radially oriented {010} active lattice facets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!