Gram-negative bacteria possess a complex cell envelope that consists of a plasma membrane, a peptidoglycan cell wall and an outer membrane. The envelope is a selective chemical barrier that defines cell shape and allows the cell to sustain large mechanical loads such as turgor pressure. It is widely believed that the covalently cross-linked cell wall underpins the mechanical properties of the envelope. Here we show that the stiffness and strength of Escherichia coli cells are largely due to the outer membrane. Compromising the outer membrane, either chemically or genetically, greatly increased deformation of the cell envelope in response to stretching, bending and indentation forces, and induced increased levels of cell lysis upon mechanical perturbation and during L-form proliferation. Both lipopolysaccharides and proteins contributed to the stiffness of the outer membrane. These findings overturn the prevailing dogma that the cell wall is the dominant mechanical element within Gram-negative bacteria, instead demonstrating that the outer membrane can be stiffer than the cell wall, and that mechanical loads are often balanced between these structures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6089221PMC
http://dx.doi.org/10.1038/s41586-018-0344-3DOI Listing

Publication Analysis

Top Keywords

outer membrane
24
cell wall
16
gram-negative bacteria
12
cell
9
element gram-negative
8
cell envelope
8
mechanical loads
8
outer
6
membrane
6
mechanical
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!