Ultraviolet (UV) photodegradation is increasingly applied to control volatile organic compounds (VOCs) due to its degradation capabilities for recalcitrant compounds. However, sometimes the UV photodegradation products are also toxic and can affect human health. Here, 10 VOCs at 150~200 ppm in air were treated using a laboratory-scale UV reactor with 185/254 nm irradiation, and the biotoxicity of their off-gas was studied by investigating their off-gas absorption solutions. The CO₂ increase and VOC decrease were 39~128 ppm and 0~42 ppm, respectively, indicating that the VOCs and their products were mineralized in off-gas absorption solutions. The total organic carbon (TOC) of the absorption solutions are 4~20 mg∙L. Luminescent bacteria and were used to detect the acute toxicity, and an assay was used to determine the genotoxic potential. Trichloroethylene showed a highest toxicity to luminescent bacteria, while chlorobenzene had the lowest toxicity. Water-soluble UV photodegradation products for styrene are very toxic to . In the assay, the genotoxicities of off-gas absorption solutions of trichloroethylene, methylbenzene, ethyl acetate, butyl alcohol, and styrene were 51.26, 77.80, 86.89, 97.20, and 273.62 mg (4-NQO)·L respectively. In addition, the analysis of the genotoxicity/TOC and intermediates products indicated that the off-gas absorption solutions of styrene, trichloroethylene, and butyl alcohol contain many highly toxic substances.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6069044 | PMC |
http://dx.doi.org/10.3390/ijerph15071520 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!