Epstein-Barr virus (EBV) infects epithelial cells and is associated with epithelial malignancies. Although EBV reactivation is induced by epithelial differentiation, the available methods for differentiation are not widely used. In a recent study, Caves et al. (mSphere 3:e00152-18, 2018, https://doi.org/10.1128/mSphere.00152-18) explored the use of a new transwell-based air-liquid interface (ALI) system to differentiate EBV-infected nasopharyngeal carcinoma cells. They found that cells cultured in the ALI system expressed markers of differentiation and supported complete EBV reactivation. This system offers an easy method for differentiation that could be widely adopted. This system could be extended to other epithelial cell types.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6052335PMC
http://dx.doi.org/10.1128/mSphere.00350-18DOI Listing

Publication Analysis

Top Keywords

air-liquid interface
8
nasopharyngeal carcinoma
8
ebv reactivation
8
ali system
8
system
5
interface system
4
system understand
4
understand epstein-barr
4
epstein-barr virus-associated
4
virus-associated nasopharyngeal
4

Similar Publications

Skin-on-a-chip models provide physiologically relevant platforms for studying diseases and drug evaluation, replicating the native skin structures and functions more accurately than traditional 2D or simple 3D cultures. However, challenges remain in creating models suitable for microneedling applications and monitoring, as well as developing skin cancer models for analysis and targeted therapy. Here, we developed a human skin/skin cancer-on-a-chip platform within a microfluidic device using bioprinting/bioengineering techniques.

View Article and Find Full Text PDF

RpoN mediates biofilm formation by directly controlling gene cluster and c-di-GMP synthetic metabolism in .

Biofilm

June 2025

State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, 570228, Hainan Province, China.

is a prevalent pathogen in both humans and marine species, exhibiting high adaptability to various adverse environmental conditions. Our previous studies have shown that Δ formed three enhanced biofilm types, including spectacular surface-attached biofilm (SB), scattered pellicle biofilm (PB), and colony rugosity. However, the precise mechanism through which regulates biofilm formation has remained unclear.

View Article and Find Full Text PDF

This study describes a complex human in vitro model for evaluating anti-inflammatory drug response in the alveoli that may contribute to the reduction of animal testing in the pre-clinical stage of drug development. The model is based on the human alveolar epithelial cell line Arlo co-cultured with macrophages differentiated from the THP-1 cell line, creating a physiological biological microenvironment. To mimic the three-dimensional architecture and dynamic expansion and relaxation of the air-blood-barrier, they are grown on a stretchable microphysiological lung-on-chip.

View Article and Find Full Text PDF

Exposure to ambient particulate matter (PM) with an aerodynamic diameter of <10 μm (PM) is a well-established health hazard. There is increasing evidence that geogenic (Earth-derived) particles can induce adverse biological effects upon inhalation, though there is high variability in particle bioreactivity that is associated with particle source and physicochemical properties. In this study, we investigated physicochemical properties and biological reactivity of volcanic ash from the April 2021 eruption of La Soufrière volcano, St.

View Article and Find Full Text PDF

Introduction: The ability of SARS-CoV-2 to evade antiviral immune signaling in the airway contributes to the severity of COVID-19 disease. Additionally, COVID-19 is influenced by age and has more severe presentations in older individuals. This raises questions about innate immune signaling as a function of lung development and age.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!