Background: Alzheimer's disease (AD) is a neurodegenerative disease that is clinically characterized by progressive cognitive decline. Mutations in amyloid-β precursor protein (APP), presenilin 1 (PSEN1), and presenilin 2 (PSEN2) are the pathogenic cause of autosomal dominant AD (ADAD). However, polymorphisms also exist within these genes.
Methods: In order to distinguish polymorphisms from pathogenic mutations, the DIAN Expanded Registry has implemented an algorithm for determining ADAD pathogenicity using available information from multiple domains, including genetic, bioinformatic, clinical, imaging, and biofluid measures and in vitro analyses.
Results: We propose that PSEN1 M84V, PSEN1 A396T, PSEN2 R284G, and APP T719N are likely pathogenic mutations, whereas PSEN1 c.379_382delXXXXinsG and PSEN2 L238F have uncertain pathogenicity.
Conclusions: In defining a subset of these variants as pathogenic, individuals from these families can now be enrolled in observational and clinical trials. This study outlines a critical approach for translating genetic data into meaningful clinical outcomes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6052673 | PMC |
http://dx.doi.org/10.1186/s13195-018-0392-9 | DOI Listing |
Am J Kidney Dis
December 2024
Service de Néphrologie, Hémodialyse et Transplantation Rénale, Centre de référence MARHEA, CHRU Brest, Brest, France; Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Brussels, Belgium. Electronic address:
Rationale & Objective: Monoallelic predicted Loss-of-Function (pLoF) variants in IFT140 have recently been associated with an autosomal dominant polycystic kidney disease (ADPKD)-like phenotype. This study sought to enhance the characterization of this phenotype.
Study Design: Case series.
Biochem Biophys Res Commun
December 2024
Laboratory of Molecular Neurodegeneration, Peter the Great St Petersburg State Polytechnical University, St Petersburg, 195251, Russian Federation. Electronic address:
The expansion of glutamine residue track (polyQ) within soluble proteins (Q proteins) is responsible for nine autosomal-dominant genetic neurodegenerative disorders. These disorders develop when polyQ expansion exceeds a specific pathogenic threshold (Q) which is unique for each disease. However, the pathogenic mechanisms associated with the variability of Q within the family of Q proteins are poorly understood.
View Article and Find Full Text PDFGenet Med
December 2024
Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA; The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA; Harvard Medical School, Boston, MA.
Purpose: Genomic sequencing of newborns (NBSeq) can initiate disease surveillance and therapy for children, and may identify at-risk relatives through reverse cascade testing. We explored genetic risk communication and reverse cascade testing among families of newborns who underwent exome sequencing and had a risk for autosomal dominant disease identified.
Methods: We conducted semi-structured interviews with parents of newborns enrolled in the BabySeq Project who had a pathogenic or likely-pathogenic (P/LP) variant associated with an autosomal dominant (AD) childhood- and/or adult-onset disease returned.
Clin Genet
December 2024
Department of Medical Genetics, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey.
Renal ciliopathies are a genetically and phenotypically heterogeneous group of diseases characterized by cystic and dysplastic kidneys. The aim of this study was to investigate the correlation between genetic changes that cause renal ciliopathies and phenotypic outcomes. The study group consisted of 137 patients diagnosed with renal ciliopathy disease.
View Article and Find Full Text PDFCerebellum
December 2024
Department of Neurology, International University of Health and Welfare Mita Hospital, Mita 1-4-3, Minato-ku, Tokyo, 108-8329, Japan.
Variants in KIF1A are associated with hereditary spastic paraplegia (SPG30), which can manifest in both pure and complex forms. We describe a Japanese family with a novel KIF1A variant presenting with a complex form of SPG30. Patient 1, a 69-year-old woman, experienced progressive gait disturbance due to spastic paraparesis and cerebellar atrophy, and intellectual disability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!