Background: Assisted gait with forearm crutches is frequently performed during the recovery of musculoskeletal injuries of the lower limb. The amount of body weight applied to the crutch or crutches depends on the pathology and the treatment phase. The transition from assisted gait with two crutches to a single crutch is usually recommended when the subject is able to load the 50% of the body weight upon the affected member. An altered assisted gait will cause biomechanic alterations and, therefore, longer treatments and relapses. The aim of this study was to analyze the influence of 10, 25 and 50% of body weight applied to a forearm crutch during a unilateral assisted gait in the spatial and temporal step parameters to determine the load that produces alterations in gait biomechanics and the load that does not.
Methods: Eleven healthy subjects performed normal gait (NG) and assisted gait with a forearm crutch, in which the applied loads were: comfortable (C), 25 and 50% of their body weight. Vicon System was employed for gait recording. GCH System 2.0 and GCH Control Software 1.0 controlled the loads. The variables were: step length, step period, velocity, step width and step angle. Friedman test compared all the gait modalities: NG and the different loads. Wilcoxon signed-rank test analyzed ipsilateral and contralateral step parameters to the crutch globally and for each subject.
Results: Friedman test showed significant differences between NG, C, 25 and 50%, especially for step period and velocity. Wilcoxon test had significant differences only in 4 of the 20 general comparisons between ipsilateral and contralateral steps to the crutch. In the analysis by subjects, step length, step period and velocity showed 79/132, 110/132 and 58/66 significant differences, respectively.
Conclusions: The increase in the load exerted over a forearm crutch produced an increase in the step period, accompanied by a reduction of step length and gait velocity. Step width and step angle were not modified. The unloading of 25 and 50% of body weight on a single crutch is incorrect from the biomechanical point of view. Two crutches should be employed when the body weight to unload exceeds 10%.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6052579 | PMC |
http://dx.doi.org/10.1186/s12938-018-0527-z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!