Apigenin prevents metabolic syndrome in high-fructose diet-fed mice by Keap1-Nrf2 pathway.

Biomed Pharmacother

Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, 300070, Tianjin, China.

Published: September 2018

Chronic dietary high fructose leads to various kinds of undesirable metabolic effects. Apigenin, a naturally occurring plant flavone, is plentiful in fruits and vegetables. The aim of this study was to identify the protective effects of apigenin on metabolic syndrome and elucidate potential underlying mechanisms. The animal model was established by 4-weeks high fructose feeding. Insulin resistance was estimated by oral glucose tolerance test and homeostasis model assessment-insulin resistance index. Liver function was evaluated by serum AST and ALT, hepatic histopathological alternation, and lipid accumulation in the liver. The alterations of lipid profile was evaluated by TG, TC, LDL-C and HDL-C levels in serum. Administration of apigenin exerted beneficial effects through improving insulin resistance, alleviating liver injury, and inhibiting the alterations of lipid profile in high fructose-fed mice. In addition, apigenin potently facilitated the accumulation of Nrf2 nuclear translocation and accompanied by increasing HO-1 and NQO1 protein expressions, which are responsible for attenuating oxidative stress. Molecular docking results demonstrated that potential interaction of apigenin with the Nrf2-binding site in the Keap1 protein. In summary, we demonstrated that apigenin prevented high fructose-induced metabolic syndrome probably by inhibiting binding of Keap1 to Nrf2, and thus Nrf2 nuclear translocation, subsequently resulting in increased the expressions of anti-oxidative genes including HO-1 and NQO1.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2018.06.108DOI Listing

Publication Analysis

Top Keywords

metabolic syndrome
12
high fructose
8
effects apigenin
8
insulin resistance
8
alterations lipid
8
lipid profile
8
nrf2 nuclear
8
nuclear translocation
8
ho-1 nqo1
8
apigenin
7

Similar Publications

Metabolic profiling reveals altered amino acid and fatty acid metabolism in children with Williams Syndrome.

Sci Rep

December 2024

Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Children's Regional Medical Center, National Clinical Research Center for Child Health, 3333 Binsheng Road, Hangzhou, 310052, Zhejiang Province, China.

Williams Syndrome (WS) is a rare neurodevelopmental disorder with a prevalence of 1 in 7500 to 1 in 20,000 individuals, caused by a microdeletion in chromosome 7q11.23. Despite its distinctive clinical features, the underlying metabolic alterations remain largely unexplored.

View Article and Find Full Text PDF

Elevated triglyceride glucose index is associated with advanced cardiovascular kidney metabolic syndrome.

Sci Rep

December 2024

Department of Cardiology, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510120, China.

The cardiovascular kidney metabolic (CKM) syndrome is a dynamic geriatric condition that has received limited research attention regarding its potential associations with the triglyceride glucose (TyG) index. This study aims to explore the potential association between the TyG index and advanced CKM syndrome. Data for this cross-sectional study were obtained from the National Health and Nutrition Examination Survey (NHANES) conducted between 2011 and 2018.

View Article and Find Full Text PDF

Early detection of a premetabolic status that is at risk for metabolic syndrome (MetS) but not meeting the criteria is crucial. This study examined 27,623 participants aged 20-50 (mean: 40.7) years who underwent initial health screening at Kangbuk Samsung Hospital (2011-2019), focusing on individuals with one or two MetS components.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!