Sequence patterns of charge, hydrophobicity, hydrogen bonding, and other amino acid physicochemical properties contribute to mechanisms of protein folding, but how sequence composition and patterns influence the conformational dynamics of the denatured state ensemble is not fully understood. To investigate structure-sequence relationships in the denatured state, we reversed the sequence of staphylococcal nuclease and characterized its structure, thermodynamic character, and hydrodynamic radius using circular dichroism spectroscopy, dynamic light scattering, analytical ultracentrifugation, and size-exclusion chromatography as a function of temperature. The macromolecular size of "Retro-nuclease" is highly expanded in solution with characteristics similar to biological intrinsically disordered proteins. In contradistinction to a disordered state, Retro-nuclease exhibits a broad sigmoid transition of its hydrodynamic dimensions as temperature is increased, indicating a thermodynamically controlled compaction. Counterintuitively, the magnitude of these temperature-induced hydrodynamic changes exceed that observed from thermal denaturation of folded unaltered staphylococcal nuclease. Undetectable by calorimetry and intrinsic tryptophan fluorescence, the lack of heat capacity or fluorescence changes throughout the thermal transition indicate canonical hydrophobic collapse did not drive the Retro-nuclease structural transitions. Temperature-dependent circular dichroism spectroscopy performed on Retro-nuclease and computer simulations correlate to temperature sensitivity in the intrinsic sampling of backbone conformations for polyproline II and α-helix. The experimental results indicate a role for sequence direction in mediating the collapse of the polypeptide chain, whereas the simulation trends illustrate the generality of the observed heat effects on disordered protein structure.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6050754 | PMC |
http://dx.doi.org/10.1016/j.bpj.2018.06.006 | DOI Listing |
Q Rev Biophys
January 2025
Elettra Sincrotrone Trieste, Italy.
Yeast frataxin (Yfh1) is a small natural protein from yeast that has the unusual property of undergoing cold denaturation at temperatures above the freezing point of water when under conditions of low ionic strength. This peculiarity, together with remarkable resilience, allows the determination, for the whole protein as well as for individual residues, of the stability curve, that is the temperature dependence of the free energy difference between the unfolded and folded forms. The ease of measuring stability curves without the need to add denaturants or introduce destabilizing mutations makes this protein an ideal 'tool' for investigating the influence of many environmental factors on protein stability.
View Article and Find Full Text PDFRes Vet Sci
January 2025
Laboratório de Biotecnologia e Bioquímica Aplicada, Departamento de Química, Universidade Federal de Lavras, Lavras, MG, Brazil. Electronic address:
The aim of this study was to evaluate the proteolytic profile of the cell-free crude extract (CFCE) of Pleurotus djamor and its nematicidal action on Haemonchus spp. and Trichostrongylus spp. larvae in coprocultures.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, The College of Life Sciences, Sichuan University, 24 South Section 1, 1st Ring Road, Chengdu, Sichuan 610064, P.R. China.
Region-specific RNA modifications are crucial for advancing RNA research and therapeutics, including messenger RNA (mRNA)-based vaccines and immunotherapy. However, the predominant method, synthesizing regionally modified mRNAs with short single-stranded DNA (ssDNA) splints, encounters challenges in ligating long mRNA fragments due to the formation of RNA self-folded complex structures. To address this issue, we developed an efficient strategy using an easily obtained long double-stranded DNA (dsDNA) as a ligation splint after in situ denaturing, while parts of this dsDNA are the templates for transcribing mRNA fragments.
View Article and Find Full Text PDFFood Chem
December 2024
Department of Food Science, The University of Tennessee, Knoxville (UTK), TN 37996, United States. Electronic address:
The glycomacropeptide (GMP) present in the cheese whey byproduct can be an excellent antifreezing agent due to its unique molecular structure. The objective of this study was to concentrate this peptide and investigate its ice recrystallization inhibition (IRI) ability. Heat denaturation of the non-GMP proteins and preparative liquid chromatography were used to create fraction 1 (F1) and fraction 2 (F2) and these were tested using the splat assay and a modified sucrose sandwich assay to investigate their IRI activity.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Institute of Solid State Physics, University of Latvia, 8 Kengaraga Street, LV-1063 Riga, Latvia.
Surface modification is essential in microfluidic applications due to the inherent hydrophobicity of polymers, which can lead to biofouling and reagent denaturation. Despite the development, challenges such as hydrophobic molecule absorption and limitations in scaling are still present. Off-stoichiometry thiol-ene (OSTE) materials have emerged as a promising alternative, offering advantages like rapid prototyping, minimal hydrophobic absorption, and customizable surface chemistries.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!