Combining Wolbachia-induced sterility and virus protection to fight Aedes albopictus-borne viruses.

PLoS Negl Trop Dis

Biotechnology and Agroindustry Division, ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), Casaccia Research Center, Rome, Italy.

Published: July 2018

Among the strategies targeting vector control, the exploitation of the endosymbiont Wolbachia to produce sterile males and/or invasive females with reduced vector competence seems to be promising. A new Aedes albopictus transinfection (ARwP-M) was generated by introducing wMel Wolbachia in the ARwP line which had been established previously by replacing wAlbA and wAlbB Wolbachia with the wPip strain. Various infection and fitness parameters were studied by comparing ARwP-M, ARwP and wild-type (SANG population) Ae. albopictus sharing the same genetic background. Moreover, the vector competence of ARwP-M related to chikungunya, dengue and zika viruses was evaluated in comparison with ARwP. ARwP-M showed a 100% rate of maternal inheritance of wMel and wPip Wolbachia. Survival, female fecundity and egg fertility did not show to differ between the three Ae. albopictus lines. Crosses between ARwP-M males and SANG females were fully unfertile regardless of male age while egg hatch in reverse crosses increased from 0 to about 17% with SANG males aging from 3 to 17 days. When competing with SANG males for SANG females, ARwP-M males induced a level of sterility significantly higher than that expected for an equal mating competitiveness (mean Fried index of 1.71 instead of 1). The overall Wolbachia density in ARwP-M females was about 15 fold higher than in ARwP, mostly due to the wMel infection. This feature corresponded to a strongly reduced vector competence for chikungunya and dengue viruses (in both cases, 5 and 0% rates of transmission at 14 and 21 days post infection) with respect to ARwP females. Results regarding Zika virus did not highlight significant differences between ARwP-M and ARwP. However, none of the tested ARwP-M females was capable at transmitting ZIKV. These findings are expected to promote the exploitation of Wolbachia to suppress the wild-type Ae. albopictus populations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6066253PMC
http://dx.doi.org/10.1371/journal.pntd.0006626DOI Listing

Publication Analysis

Top Keywords

vector competence
12
arwp-m
9
reduced vector
8
arwp-m arwp
8
chikungunya dengue
8
arwp-m males
8
males sang
8
sang females
8
sang males
8
arwp-m females
8

Similar Publications

Morphological and molecular characterization of a Sarcocystis bovifelis-like sarcocyst in American beef.

Parasit Vectors

December 2024

United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Centre, Animal Parasitic Diseases Laboratory, Beltsville, MD, 20705-2350, USA.

Background: Parasites in the apicomplexan genus Sarcocystis infect cattle worldwide. Assessing the economic importance of each such parasite species requires proper diagnosis. Sarcocystis cruzi, a thin-walled species, infects virtually all cattle.

View Article and Find Full Text PDF

To achieve carbon neutrality, solar photovoltaic (PV) in China has undergone enormous development over the past few years. PV datasets with high accuracy and fine temporal span are crucial to assess the corresponding carbon reductions. In this study, we employed the random forest classifier to extract PV installations throughout China in 2015 and 2020 using Landsat-8 imagery in Google Earth Engine.

View Article and Find Full Text PDF

How to Convert a 3D Printer to Personal Automated Liquid Handler for Life Science Workflows.

SLAS Technol

December 2024

Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI 02912, USA. Electronic address:

Automated liquid handlers are fundamental in modern life science laboratories, yet their high costs and large footprints often limit accessibility for smaller labs. This study presents an innovative approach to decentralizing a liquid handling system by converting a low-cost 3D printer into a customizable and accurate liquid handler. The Personal Automated Liquid Handler (PALH) system, costing ∼$400, incorporates a single-channel pipet, custom 3D-printed components, and open-source software for personalized workflows, allowing researchers to build and modify the system for specific experimental needs.

View Article and Find Full Text PDF

Transmission of plant viruses that replicate in the insect vector is known as persistent-propagative manner. However, it remains unclear whether such virus-vector relationships also occur between plant viruses and other biological vectors such as arthropod mites. In this study, we investigated the possible replication of orchid fleck virus (OFV), a segmented plant rhabdovirus, within its mite vector (Brevipalpus californicus s.

View Article and Find Full Text PDF

Machine learning-based prediction of duodenal stump leakage following laparoscopic gastrectomy for gastric cancer.

Surgery

December 2024

Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China; Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China; Department of Gastrointestinal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China. Electronic address:

Background: Duodenal stump leakage is one of the most critical complications following gastrectomy surgery, with a high mortality rate. The present study aimed to establish a predictive model based on machine learning for forecasting the occurrence of duodenal stump leakage in patients who underwent laparoscopic gastrectomy for gastric cancer.

Materials And Methods: The present study included the data of 4,070 patients with gastric adenocarcinoma who received laparoscopic gastrectomy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!