Blacklegged ticks (Ixodes scapularis Say, Acari: Ixodidae) are the most commonly encountered and medically relevant tick species in New York State (NY) and have exhibited recent geographic range expansion. Forests and adjacent habitat are important determinants of I. scapularis density and may influence tick-borne pathogen prevalence. We examined how percent forest cover, dominant land cover type, and habitat type influenced I. scapularis nymph and adult density, and associated tick-borne pathogen prevalence, in an inland Lyme-emergent region of NY. I. scapularis nymphs and adults were collected from edge and wooded habitats using tick drags at 16 sites in Onondaga County, NY in 2015 and 2016. A subsample of ticks from each site was tested for the presence of Borrelia burgdorferi, Borrelia miyamotoi, Anaplasma phagocytophilum, and Babesia microti using a novel multiplex real-time polymerase chain reaction (PCR) assay, and deer tick virus using reverse transcription-PCR. Habitat type (wooded versus edge) was an important determinant of tick density; however, percent forest cover had little effect. B. burgdorferi was the most commonly detected pathogen and was present in ticks from all sites. Ba. microti and deer tick virus were not detected. Habitat type and dominant land cover type were not significantly related to B. burgdorferi presence or prevalence; however, ticks infected with A. phagocytophilum and B. miyamotoi were collected more often in urban environments. Similarity between B. burgdorferi prevalence in Onondaga County and hyperendemic areas of southeastern NY indicates a more rapid emergence than expected in a relatively naive region. Possible mechanistic processes underlying these observations are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jme/tjy111 | DOI Listing |
Front Cell Infect Microbiol
December 2024
Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia.
Introduction: In Europe sensu lato (s.l.), the causative agent of Lyme borreliosis is transmitted by the castor bean tick, .
View Article and Find Full Text PDFFront Cell Infect Microbiol
December 2024
Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States.
Ixodid ticks serve as hosts and transmission vectors for several obligate intracellular bacteria, including members of the spotted fever group (SFG) of . Although ticks generate an immune response to bacterial insults, many of the signaling molecules associated with the response and how they may contribute to vector competence for are undefined. In this study, we isolated a full-length transcript from , which encoded a Relish-type NF-κB.
View Article and Find Full Text PDFParasit Vectors
December 2024
Department of Veterinary Medicine, University of Bari, Valenzano, Bari, Italy.
The Rhipicephalus sanguineus group is an assembly of species morphologically and phylogenetically related to Rhipicephalus sanguineus sensu stricto. The taxonomy and systematics of this species group have remained obscure for a long time, but extensive research conducted during the past two decades has closed many knowledge gaps. These research advancements culminated in the redescription of R.
View Article and Find Full Text PDFHeliyon
December 2024
Qinghai University State Key Laboratory of Plateau Ecology and Agriculture, Xining, 810016, Qinghai, China.
The Qinghai Lake National Nature Reserve (QLNNR), renowned for its abundant natural resources and diverse ecological habitats, serves as an ideal environment for ticks, thereby increasing the risk of various tick-borne pathogens (TBPs) transmission. This study aimed to investigate the prevalence of TBPs in ticks collected from Przewalski's gazelle and Tibetan sheep within the QLNNR. A total of 313 tick samples were collected from the vicinity of Qinghai Lake.
View Article and Find Full Text PDFParasit Vectors
December 2024
Global Health and Tropical Medicine- Institute of Hygiene and Tropical Medicine, NOVA University of Lisbon, Rua da Junqueira 100, 1349-008, Lisbon, Portugal.
Background: Tick-borne rickettsioses (TBR) are emerging, neglected, zoonoses, caused by intracellular α-proteobacteria of the genus Rickettsia, that pose a growing public health concern. The aim of the present study was to evaluate rickettsial infections in questing ticks collected from four different ecological areas in mainland Portugal.
Methods: Over a two-year period, a total of 707 questing ticks were collected.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!