Human polynucleotide phosphorylase (PNPase) is an evolutionarily conserved 3'-to-5' exoribonuclease principally located in mitochondria where it is responsible for RNA turnover and import. Mutations in PNPase impair structured RNA transport into mitochondria, resulting in mitochondrial dysfunction and disease. PNPase is a trimeric protein with a doughnut-shaped structure hosting a central channel for single-stranded RNA binding and degradation. Here, we show that the disease-linked human PNPase mutants, Q387R and E475G, form dimers, not trimers, and have significantly lower RNA binding and degradation activities compared to wild-type trimeric PNPase. Moreover, S1 domain-truncated PNPase binds single-stranded RNA but not the stem-loop signature motif of imported structured RNA, suggesting that the S1 domain is responsible for binding structured RNAs. We further determined the crystal structure of dimeric PNPase at a resolution of 2.8 Å and, combined with small-angle X-ray scattering, show that the RNA-binding K homology and S1 domains are relatively inaccessible in the dimeric assembly. Taken together, these results show that mutations at the interface of the trimeric PNPase tend to produce a dimeric protein with destructive RNA-binding surfaces, thus impairing both of its RNA import and degradation activities and leading to mitochondria disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6144817PMC
http://dx.doi.org/10.1093/nar/gky642DOI Listing

Publication Analysis

Top Keywords

degradation activities
12
pnpase
9
crystal structure
8
structure dimeric
8
human pnpase
8
rna
8
rna import
8
import degradation
8
structured rna
8
single-stranded rna
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!