Experimental data and observational studies in adults suggest that even subtle changes in acid-base balance, indicative of a higher systemic proton load, are related to higher blood pressure (BP) levels and an increased hypertension risk. However, these associations have not been investigated during growth. The kidney is the central organ in regulating excretion of nonvolatile acids, and renal citrate excretion has been shown to be a sensitive, noninvasive marker of changes in systemic acid balance. We thus analyzed the prospective relation of 24-h citrate excretion, as well as net acid excretion capacity (NAEC; a noninvasive indicator of the renal ability to excrete protons), during adolescence (boys: 10-15 yr; girls: 9-14 yr) with BP levels in young adulthood (18-30 yr) in 374 healthy participants of the Dortmund Nutritional and Anthropometric Longitudinally Designed (DONALD) Study. In linear-regression analyses adjusted for age, sex, 24-h urinary excretions of sodium and potassium, as well as further relevant confounders, a 1-mmol/1.73 m/day higher adolescent citrate excretion was related to 1.2 mmHg lower systolic BP ( P = 0.02) but not to diastolic BP ( P = 0.6). A 10-mEq higher NAEC during adolescence was related to 1.7 mmHg lower systolic BP in young men, but this association was statistically nonsignificant ( P = 0.07) after multivariable adjustment. Additional adjustment for adult body mass index did not alter these findings. To conclude, subtle changes in systemic acid-base balance during adolescence are already indicative for later BP. Potential sex differences in these associations should be investigated in further studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6293298 | PMC |
http://dx.doi.org/10.1152/ajprenal.00144.2018 | DOI Listing |
Low magnesium (Mg) intake increases the risk of various diseases such as anxiety disorder, depression, and diabetes. However, a reliable biomarker of mild Mg deficiency due to low Mg intake has not yet been identified. We speculate that metabolomics will be effective for biomarker discovery because Mg can affect various metabolic processes in the body.
View Article and Find Full Text PDFJ Alzheimers Dis
January 2025
Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.
Background: Sodium-glucose cotransporter 2 (SGLT2) inhibitors is a novel category of medications for diabetes, exhibiting neuroprotective potential. However, evidence regarding whether the use of SGLT2 inhibitors effectively reduces the risk of Alzheimer's disease (AD) remains unclear.
Objective: Our study employed Mendelian randomization (MR) analysis to investigate potential causal relationships between SGLT2 inhibition, metabolites, and AD.
Aquat Toxicol
January 2025
Analytical Chemistry Laboratory, ASSIST Group, Main campus, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Campus, Lucknow India. Electronic address:
Anticoccidials, commonly used in veterinary medicine to treat coccidiosis in food-producing animals, particularly in poultry farming, are associated with potential environmental risks due to their excretion in manure and subsequent land-spreading. Diclazuril, a widely used anticoccidial, has been detected in groundwater, raising concerns about its impact on non-target species. This study investigates the developmental toxicity of diclazuril in zebrafish embryos over a 96-hour exposure period, utilizing biomarkers such as oxidative stress indicators and metabolomic profiles.
View Article and Find Full Text PDFArch Ital Urol Androl
November 2024
C.d.C. Ambrosiana, Cesano Boscone, Milan.
Theobromine (or 3,7-dimethylxanthine) is a natural alkaloid present in cocoa plant and its derivatives, such as chocolate. About 20% of ingested theobromine is excreted unchanged in the urine. Theobromine also derived from caffeine that is metabolized into theobromine by 12%.
View Article and Find Full Text PDFAnn Nutr Metab
December 2024
Division of Nephrology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China.
Introduction: Phosphate ion is common in the core of urinary stones and may initiate stone formation. However, the precise role of phosphate in the initiation of stone formation remains obscure. We assessed the effects of dietary phosphate load on urinary stone risk and phosphate metabolism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!