Exploring the Lapse in Druggability: Sequence Analysis, Structural Dynamics and Binding Site Characterization of K-RasG12C Variant, a Feasible Oncotherapeutics Target.

Anticancer Agents Med Chem

Molecular Bio-Computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa.

Published: July 2019

Background: The difficulty in druggability of K-Ras variant has presented a challenge in the treatment of cancer diseases associated with its dysfunctionality. Despite the identification of different binding sites, limited information exists in the literature about their characteristics. Therefore, identification, crossvalidation and characterization of its druggable sites would aid the design of chemical compounds that will arrest its dysfunctionality related oncogenesis.

Objective: This study entails the identification, cross-validation and characterization of K-Ras G12C variant's binding sites for potential druggability, coupled with the elucidation of alterations in 3D conformations and dynamics.

Method: Molecular dynamics simulation was carried out on the inactive, the active and the hyperactive K-RasG12Cvariant using the amber software package. The SiteMap software was employed in identifying and characterizing the druggable binding sites while the validation of the binding sites was carried out with the SiteHound and MetaPocket servers.

Results: Four druggable binding sites were identified, validated and characterized based on physicochemical attributes such as size, volume, degree of enclosure or exposure, degree of contact, hydrophobic/hydrophilic character, hydrophobic/hydrophilic balance and hydrogen-bonding features. Conformational studies also revealed that the K-Ras variant exhibited notable structural instability, increased flexibility and a strongly anticorrelated movement compared to the inactive and active wildtype forms.

Conclusion: The attributes of the characterized druggable sites will be useful in designing site-specific K-Ras inhibitors for the treatment of K-Ras variant associated cancer diseases.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1871520618666180718110231DOI Listing

Publication Analysis

Top Keywords

binding sites
20
k-ras variant
12
cancer diseases
8
druggable sites
8
inactive active
8
druggable binding
8
sites
7
binding
6
k-ras
5
exploring lapse
4

Similar Publications

The interaction between dissolved organic matter (DOM) and ferrihydrite (Fh) is a crucial process to control the environmental behavior of heavy metals (HMs) in soil environments, with DOM playing a particularly strong role in HMs fate. Since chemical properties of DOM vary based on different soil parent materials, the underlying impact of DOM-Fh associations on HMs binding remains unclear. This study systematically investigated the interactions between DOM from three soil parent materials (fluvial alluvium: FDOM, sand-shale: SDOM and granite: GDOM) and Fh, and meanwhile understand their effects on the environmental behavior of Cd and Pb under various environmental conditions.

View Article and Find Full Text PDF

Integrative study of subcellular distribution, chemical forms, and physiological responses for understanding cadmium tolerance in two garden shrubs.

J Plant Physiol

January 2025

Beijing Forestry University, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, China. Electronic address:

Urban ornamental shrubs have significant potential for restoring cadmium (Cd)-contaminated soil. The Cd enrichment characteristics and tolerance mechanisms of Buxus sinica and Ligustrum × vicaryi were investigated through a simulated pot pollution experiment. Specifically, the Cd content and accumulation in different plant tissues, the subcellular distribution and chemical forms of Cd in the roots, and the effects of Cd on the ultrastructure of root cells under various Cd concentrations (0, 25, 50, 100, and 200 mg kg⁻) were analyzed.

View Article and Find Full Text PDF

A novel biochar material with magnetic modification by MnFeO and surficial hydroxyl grafting (h-MFO-BC) was synthesized for capturing HMs (Cd, Pb and Cu) and their competition in composite systems was investigated. The modification of hydroxyl considerably improved the adsorption capacity of HMs. Chemisorption and monolayer and homogeneous reaction dominated adsorption processes.

View Article and Find Full Text PDF

The human malaria parasite Plasmodium falciparum evolved from a parasite that infects gorillas, termed Plasmodium praefalciparum. The sialic acids on glycans on the surface of erythrocytes differ between humans and other apes. It has recently been shown that the P.

View Article and Find Full Text PDF

Coumarin Analogues as Promising Anti-Obesity Agents: In Silico Design, Synthesis, and In Vitro Pancreatic Lipase Inhibitory Activity.

Chem Biol Drug Des

January 2025

Laboratory of Natural Product Chemistry, Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS Pilani), Pilani, Rajasthan, India.

A set of coumarin-3-carboxamide analogues were designed, synthesized, and evaluated for their ability to impede pancreatic lipase (PL) activity. Out of all the analogues, 5dh and 5de demonstrated promising inhibitory activity against PL, as indicated by their respective IC values of 9.20 and 11.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!