Multiheme cytochromes possess closely packed redox-active hemes arranged as chains spanning the tertiary structure. Here we describe five variants of a representative multiheme cytochrome engineered as biohybrid phototransducers for converting light into electricity. Each variant possesses a single Cys sulfhydryl group near a terminus of the heme chain, and this was efficiently labelled with a Ru (2,2'-bipyridine) photosensitiser. When irradiated in the presence of a sacrificial electron donor (SED) the proteins exhibited different types of behaviour. Certain proteins were rapidly and fully reduced. Other proteins were rapidly semi-reduced but resisted complete photoreduction. These findings reveal that photosensitised multiheme cytochromes can be engineered to act as resistors, with intrinsic regulation of light-driven electron accumulation, and also as molecular wires with essentially unhindered photoreduction. It is proposed that the observed behaviour arises from interplay between the site of electron injection and the distribution of heme reduction potentials along the heme chain.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cbic.201800313DOI Listing

Publication Analysis

Top Keywords

multiheme cytochromes
12
photosensitised multiheme
8
molecular wires
8
heme chain
8
proteins rapidly
8
cytochromes light-driven
4
light-driven molecular
4
wires resistors
4
resistors multiheme
4
cytochromes possess
4

Similar Publications

Electron transfer in multicentre redox proteins: from fundamentals to extracellular electron transfer.

Biosci Rep

December 2024

Universidade Nova de Lisboa Instituto de Tecnologia Quimica e Biologica Antonio Xavier, Oeiras e São Julião da Barra, Portugal.

Multicentre redox proteins participate in diverse metabolic processes, such as redox shuttling, multielectron catalysis, or long-distance electron conduction. The detail in which these processes can be analysed depends on the capacity of experimental methods to discriminate the multiple microstates that can be populated while the protein changes from the fully reduced to the fully oxidized state. The population of each state depends on the redox potential of the individual centres and on the magnitude of the interactions between the individual redox centres with their neighbours.

View Article and Find Full Text PDF

New insights in uranium bioremediation by cytochromes of the bacterium G. uraniireducens.

J Biol Chem

December 2024

Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal.; UCIBIO - Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal. Electronic address:

The bacterium Geotalea uraniireducens, commonly found in uranium-contaminated environments, plays a key role in bioremediation strategies by converting the soluble hexavalent form of uranium (U) into less soluble forms (e.g. U.

View Article and Find Full Text PDF

Selenium treatment via integrating flow electrode capacitive deionization (FCDI) and bio-electrochemical systems (BES).

Water Res

November 2024

Department of Civil, Construction, and Environmental Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA. Electronic address:

Selenium pollution in aquatic environments poses a major global challenge, with a significant gap in effective treatment technologies. In this study, we explored a novel approach integrating flow-electrode capacitive deionization (FCDI) with bio-electrochemical systems (BES) for the removal and reduction of selenate and selenite ions in one compact reactor. Our integrated system was electricity-driven, eliminating chemical usage.

View Article and Find Full Text PDF

A survey of the Desulfuromonadia "cytochromome" provides a glimpse of the unexplored diversity of multiheme cytochromes in nature.

BMC Genomics

October 2024

Av da República (EAN), Instituto de Tecnologia Química e Bioloógica António Xavier da Universidade Nova de Lisboa, Oeiras, 2780-157, Portugal.

Background: Multiheme cytochromes c (MHC) provide prokaryotes with a broad metabolic versatility that contributes to their role in the biogeochemical cycling of the elements and in energy production in bioelectrochemical systems. However, MHC have only been isolated and studied in detail from a limited number of species. Among these, Desulfuromonadia spp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!