A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The inhibitory and binding studies of methyl-sulfone hydroxamate based inhibitors against LpxC from drug resistant Moraxella catarrhalis using biophysical, biochemical and in silico approaches. | LitMetric

Several reported potential compounds against UDP-3-O-(R-3-Hydroxymyristoyl)-N-acetylglucosamine deacetylase (LpxC) have shown large variation in the potency and efficacy. The differential susceptibility and selective binding of these inhibitors against LpxC are still unexplored. In the present work, we have characterized LpxC from Moraxella catarrhalis (McLpxC) and investigated its binding with potent inhibitors LpxC-2 and LpxC-4 using biochemical, biophysical and in silico approaches. The circular dichroism studies have revealed the changes in the secondary and tertiary structure of McLpxC upon inhibitors binding. The fluorescence quenching mechanism was found to be static with k > 10 suggesting the ground state complex formation between the McLpxC and inhibitors. Altogether spectroscopic findings suggest that the interaction of LpxC-4 and LpxC-2 caused conformational changes marked by the loss of α-helical content in McLpxC. In ITC based studies, both inhibitors have shown comparable binding affinities (K = ~10.0 μΜ), and their interactions were exothermically driven by enthalpy change. The docking studies have shown the possibility of two binding sites in McLpxC for these inhibitors with similar binding energies (~10.0 kcal mol). Thus, the present study significantly suggests that further optimization and utilization of molecules based on this scaffold will be helpful in designing the new antimicrobial agents targeting LpxC.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2018.07.025DOI Listing

Publication Analysis

Top Keywords

mclpxc inhibitors
12
inhibitors lpxc
8
moraxella catarrhalis
8
silico approaches
8
inhibitors binding
8
inhibitors
7
binding
6
lpxc
5
mclpxc
5
inhibitory binding
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!